Register | Login

Microbiology Research Journal International

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Accepted Papers
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Printed Hard copy
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Submission
  • Testimonials
  • Announcements
Advanced Search
  1. Home
  2. Archives
  3. 2022 - Volume 32 [Issue 8]
  4. Original Research Article

Author Guidelines


Submit Manuscript


Editorial Board Member


Membership


Subscription


Isolation, Identification and Evaluation of the Plant Growth Promoting Activities of Endophytic Stenotrophomonas maltophilia to Stimulate Growth of Clover Plants under Salt Stress

  •   Amal, A. Ali
  •   Neama H. Osman

Microbiology Research Journal International, Volume 32, Issue 8, Page 7-20
DOI: 10.9734/mrji/2022/v32i81336
Published: 8 November 2022

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


Two endophytic bacterial isolates were obtained from root nodules of clover plants grown in salt affected clay soil of Egypt. The isolates were closely linked to Stenotrophomonas maltophilia strains IPR-Pv696 and 262XG2 based on the sequencing and phylogenetic analysis of 16S rRNA genes, and deposited in GenBank with accession numbers OM980221.1 (AM1) and OM980223.1 (AM2) respectively. The isolates were evaluated for their potential to promote plant growth. The results revealed that the two isolates of S. maltophilia strains (IPR-Pv696 and 262XG2) respectively exhibited production for indole-3- acetic acid (30.26 & 31.15 µg/ml), exopolysaccharides (13.57 & 13.68 g/l), nitrogen fixation activity and they solubilize the phosphate (278 & 208 mg/l) and potassium (33.5 & 32.9 µg/ml). In a field trial, these two isolates increased clover plant growth, chlorophyll, carbohydrates content and nutrients uptake while lowering proline levels. Hence this highlights its application to be exploited as biofertilizer by leading to sustainable agriculture. This could be a promising inoculant for many other crops.

Keywords:
  • Endophytic bacteria
  • Stenotrophomonas
  • PGPR
  • 16S rRNA
  • phylogenetic tree
  • Full Article - PDF
  • Review History

How to Cite

Ali, A. A., & Osman, N. H. (2022). Isolation, Identification and Evaluation of the Plant Growth Promoting Activities of Endophytic Stenotrophomonas maltophilia to Stimulate Growth of Clover Plants under Salt Stress. Microbiology Research Journal International, 32(8), 7–20. https://doi.org/10.9734/mrji/2022/v32i81336
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver
  • Endnote/Zotero/Mendeley (RIS)
  • BibTeX

References

Khaitov B, Kurbonov A, Abdiev A, Adilov M. Effect of chickpea in association with Rhizobium to crop productivity and soil fertility. Eurasian J Soil Sci. 2016;5(2): 105-12.

DOI: 10.18393/ejss.2016.2.105-112

Guo DJ, Singh RK, Singh P, Li DP, Sharma A, Xing YX, et al. Complete genome sequence of Enterobacter roggenkampii ed5 a nitrogen fixing plant growth promoting endophytic bacterium with biocontrol and stress tolerance properties isolated from sugarcane root. Front Microbiol. 2020;11:580081.

DOI: 10.3389/fmicb.2020.580081, PMID 33072048.

Hayat R, Ali S, Amara U, Khalid R, Ahmed I. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann Microbiol. 2010;60(4):579-98.

DOI: 10.1007/s13213-010-0117-1

Zewide I. Role of bio-fertilizer for maximizing productivity of selected horticultural crops. J Agric Res Adv. 2019; 0102:01-18.

Aeron A, Maheshwari DK, Meena VS. Endophytic bacteria promote growth of the medicinal legume Clitoria ternatea L. by chemotactic activity. Arch Microbiol. 2020; 202(5):1049-58.

DOI: 10.1007/s00203-020-01815-0, PMID 32008053.

Pandya M, Kumar GN, Rajkumar S. Invasion of rhizobial infection thread by non-rhizobia for colonization of Vigna radiata root nodules. FEMS Microbiol Lett. 2013;348(1):58-65.

DOI: 10.1111/1574-6968.12245, PMID 24033808.

Tariq M, Hameed S, Yasmeen T, Ali A. Non-rhizobial bacteria for improved nodulation and grain yield of mung bean [Vigna radiata (L.) Wilczek]. Afr J Biotechnol. 2012;11(84):15012-9.

Rajendran G, Patel MH, Joshi SJ. Isolation and characterization of nodule associated Exiguobacterium sp. from the root nodules of Fenugreek (Trigonella foenum-Graecum) and their possible role in plant growth promotion. Int J Microbiol. 2012; 436:1-8.

DOI: 10.1155/2012/693982

Alexander A, Singh VK, Mishra A, Jha B. Plant growth promoting rhizobacterium Stenotrophomonas maltophilia BJ01 augments endurance against N2 starvation by modulating physiology and biochemical activities of Arachis hypogea. PLOS ONE. 2019;14(9):e0222405.

DOI: 10.1371/journal.pone.0222405, PMID 31513643.

Kumar NP, Audipud AV. Exploration of a novel plant growth promoting bacteria Stenotrophomonas maltophilia AVP27 isolated from the chilli rhizosphere soil. Int J Eng Res Gen Sci. 2015;3:265-76.

Berg G, Egamberdieva D, Lugtenberg B, Hagemann M. Symbiotic plant–microbe interactions: Stress protection, plant growth promotion, and biocontrol by Stenotrophomonas. In: Seckbach J, Grube M, editors Symbioses and stress. Cellular origin, life in extreme habitats and astrobiology. Dordrecht: Springer. 2010; 17:445-60.

DOI: 10.1007/978-90-481-9449-0_22

Naz I, Bano A. Assessment of phytohormones producing capacity of Stenotrophomonas maltophilia SSA and its interaction with Zea mays l. Pak J Bot. 2012;44(1):465-9.

Suckstorff I, Berg G. Evidence for dose dependent effects on plant growth by Stenotrophomonas strains from difffferent origins. J Appl Microbiol. 2003;95(4): 656-63.

DOI: 10.1046/j.1365-2672.2003.02021.x, PMID 12969277.

Park M, Kim C, Yang J, Lee H, Shin W, Kim S et al. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res. 2005;160(2): 127-33.

DOI: 10.1016/j.micres.2004.10.003, PMID 15881829.

Sánchez AC, Gutiérrez RT, Santana RC, Urrutia AR, Fauvart M, Michiels J, et al. Effects of co-inoculation of native Rhizobium and Pseudomonas strains on growth parameters and yield of two contrasting Phaseolus vulgaris L. genotypes under Cuban soil conditions. Eur J Soil Biol. 2014;62:105-12.

DOI: 10.1016/j.ejsobi.2014.03.004

Granada-Mora KI, González R, Alvarado Y, Robles AR, Torres R. Caracterización de rizobacterias y estimulación de parámetros morfológicos y biomasa en maíz (Zea mays L.). Centro de Biotecnología. 2015;4(1):14-22.

Singh RP, Jha PN. The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front Microbiol. 2017;8:1945.

DOI: 10.3389/fmicb.2017.01945, PMID 29062306.

Wang X, Jordan IK, Mayer LW. A phylogenetic perspective on molecular epidemiology. In: Tang Y-W, Sussman M, Liu Dongyou, Poxton I, Schwartzman J, editors. Molecular medical microbiology. 2nd ed; 2015. p. 517-36.

DOI: 10.1016/B978-0-12-397169-2.00029-9

Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P. Toward automatic reconstruction of a highly resolved tree of life. Science. 2006; 311(5765):1283-7.

DOI: 10.1126/science.1123061, PMID 16513982.

Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2009;37((Database issue)):D5-D15.

DOI: 10.1093/nar/gkn741

Graves WL, Wilhams WA, Thomsen CD. Berseem clover: A winter annual forage for California agriculture. University of California Division of Agriculture and Natural Resources; publication No. 21536. 1996;12.

H.h. L, Channa AD, Solangi AA, . SAS. Comparative digestibility of different cuts of berseem (Trifolium alexandvinum) in sheep. Pak J Biol Sci. 2000;3(11):1938-9.

DOI: 10.3923/PJBS.2000.1938.1939

Vincent JM. The cultivation, isolation and maintenance of rhizobia. In: A manual for the practical study of the root-nodule bacteria. Blackwell Publishing. 1970;1-13.

Kshetri L, Pandey P, Sharma GD. Rhizosphere mediated nutrient management in Allium hookeri Thwaites by using phosphate solubilizing rhizobacteria and tricalcium phosphate amended soil. J Plant Interact. 2018;13(1):256-69.

DOI: 10.1080/17429145.2018.1472307

Khamwan S, Boonlue S, Riddech N, Jogloy S, Mongkolthanaruk W. Characterization of endophytic bacteria and their response to plant growth promotion in Helianthus tuberosus L. Biocatal Agric Biotechnol. 2018;13:153-9.

DOI: 10.1016/j.bcab.2017.12.007

Sambrook J, Russell D. Molecular cloning a laboratory manual. 3rd ed. Vol. 2. New York: Cold Spring Harbor Laboratory Press; 2001.

Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42(7):565-9.

DOI: 10.1038/ng.608, PMID 20562875.

Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A (USA). 2004;101(30):11030-5.

DOI: 10.1073/pnas.0404206101, PMID 15258291.

Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-4.

DOI: 10.1093/molbev/msw054, PMID 27004904.

Glickmann E, Dessaux Y. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol. 1995;61(2):793-6.

DOI: 10.1128/aem.61.2.793-796.1995, PMID 16534942.

ASTM. American standard for testing and materials. New York; 2001.

Ahmad F, Ahmad I, Khan MS. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res. 2008;163(2):173-81.

DOI: 10.1016/j.micres.2006.04.001, PMID 16735107.

Pikovskaya RI. Mobilization of phosphorous in soil connection with the vital activity of some microbial species. Microbiologiya. 1948;17:362-70.

Nguyen C, Yan W, Le Tacon F, Lapeyrie F. Genetic variability of phosphate solubilizing activity by monocaryotic and dicaryotic mycelia of the ectomycorrhizal fungus Laccaria bicolor (Maire) P.D. Orton. Plant Soil. 1992;143(2):193-9.

DOI: 10.1007/BF00007873.

Srivastava S, Yadav KR, Kundu BS. Prospects of using phosphate solubilizing Pseudomonas as biofungicide. Indian J Microbiol. 2004;44:91-4.

Sindhu SS, Gupta SK, Dadarwal KR. Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of plant growth in green gram (Vigna radiata). Biol Fertil Soils. 1999;29(1):62-8.

DOI: 10.1007/s003740050525

Sugumaran B, Janarthanam BS. Solubilization of potassium-containing minerals by bacteria and their effect on plant growth. World J Agric Sci. 2007; 3(3):350-5.

Black CA. Methods of soil analysis. Part I. American Society of Agronomy. WI: Madison Book Company. 1572;1965.

Rebecca B. Soil survey laboratory methods manual. Soil Survey Investigations Report No. 42. Natural Resources Conservation Services; 2004.

Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water stress studies. Plant Soil. 1973;39(1): 205-7.

DOI: 10.1007/BF00018060

Page AL, Miller RH, Keeney DR. Methods of chemical analysis. Part 2. Chemical and microbiological properties. 2nd ed. American Society of Agronomy, Inc. and Sci., Soc of America. Madison, WI: Inc Publishers; 1982.

Soltanpour PN, Schwab AP. A new soil test for simultaneous extraction of macro and micronutrients in alkaline soils. Commun Soil Sci Plant Anal. 1977;8(3): 195-207.

DOI: 10.1080/00103627709366714

SAS. SAS user’s guide. Cary, NC: Statistical Analysis System Institute, Inc; 1999.

Mignard S, Flandrois JP. 16S rRNA sequencing in routine bacterial identification: A 30-month experiment. J Microbiol Methods. 2006;67(3):574-81.

DOI: 10.1016/j.mimet.2006.05.009, PMID 16859787.

Ludwig F, de Kroon HD, Berendse F, Prins HHT. The influence of savanna trees on nutrient, water and light availability and the understorey vegetation. Plant Ecol. 2004; 170(1):93-105.

DOI:10.1023/B:VEGE.0000019023.29636.92

Abdel Ghaffar L, Eissa AE. Comparative analysis of 16S rRNA based phylogeny, antibiotic susceptibility, and virulence traits of Arcobacter species recovered from domestic fowl and the Nile tilapia. Egypt J Aquat Biol Fish. 2021;25(3):263-79.

DOI: 10.21608/EJABF.2021.175523

Ambawade MS, Pathade GR. Production of indole acetic acid (IAA) by Stenotrophomonas maltophilia BE25 isolated from roots of banana (Musa spp.). Int J Sci Res. 2015;4(1):2644-50.

Mohite B. Isolation and characterization of indole-3-acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr. 2013;13(ahead):0.

DOI: 10.4067/S0718-95162013005000051

Islam S, Akanda AM, Prova A, Islam MT, Hossain MM. Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol. 2015;6: 1360.

DOI: 10.3389/fmicb.2015.01360, PMID 26869996.

Abd-Alla MH, Bashandy SR, Nafady NA, Hassan AA. Enhancement of exopolysaccharide production by Stenotrophomonas maltophilia and Brevibacillus parabrevis isolated from root nodules of Cicer arietinum L. and Vigna unguiculata L. (Walp.) plants. Rend Fis Acc Lincei. 2018;29(1):117-29.

DOI: 10.1007/s12210-018-0671-1

Reinhardt EL, Ramos PL, Manfio GP, Barbosa HR, Pavan C, Moreira-Filho CA. Molecular characterization of nitrogen fixing bacteria isolated from Brazilian agricultural plants at São Paulo state. Braz J Microbiol. 2008;39(3):414-22.

DOI:10.1590/S1517-83822008000300002, PMID 24031239.

Adeleke BS, Ayangbenro AS, Babalola OO. Effect of endophytic bacterium Stenotrophomonas maltophilia JVB5 on sunflowers. Plant Prot Sci. 2022;58(3): 185-98.

DOI: 10.17221/171/2021-PPS

Khan Z, Kim SG, Jeon YH, Khan HU, Son SH, Kim YH. A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresour Technol. 2008;99(8): 3016-23.

DOI: 10.1016/j.biortech.2007.06.031, PMID 17706411.

Xiao C, Chi R, He H, Zhang W. Characterization of tricalcium phosphate solubilization by Stenotrophomonas maltophilia YC isolated from phosphate mines. J Cent S Univ Technol. 2009; 16(4):581-7.

DOI: 10.1007/s11771-009-0097-0

Gonzalez AM, Victoria DE, Gomez Merino FC. Efficiency of plant growth promoting rhizobacteria (PGPR) in sugarcane. Terra Latinoam. 2015;33:321-30.

Etesami H, Alikhani HA. Suppression of the fungal pathogen Magnaporthe grisea by Stenotrophomonas maltophilia, a seed-borne rice (Oryza sativa L.) endophytic bacterium. Arch Agron Soil Sci. 2016; 62(9):1271-84.

DOI: 10.1080/03650340.2016.1139087

Kasim WA, Osman MEH, Omar MN, Salama S. Enhancement of drought tolerance in Triticum aestivum L. seedlings using Azospirillum brasilense NO40 and Stenotrophomonas maltophilia B11. Bull Natl Res Cent. 2021;45(1):95.

DOI: 10.1186/s42269-021-00546-6

Liaquat F, Munis MFH, Arif S, Haroon U, Shengquan C, Qunlu L. Cd-tolerant SY-2 strain of Stenotrophomonas maltophilia: A potential PGPR, isolated from the Nanjing mining area in China. 3 Biotech. 2020; 10(12):519.

DOI: 10.1007/s13205-020-02524-7, PMID 33194523.

Singh S, Maurya BR, Bahadur I. Solubilization of potassium containing various K-mineral sources by K-solubilizing bacterial isolates on Aleksandrov medium. Int J Curr Microbiol Appl Sci. 2018;7(3):1142-51.

DOI: 10.20546/ijcmas.2018.703.136

Claussen W. Proline as a measure of stress in tomato plants. Plant Sci. 2005; 168(1):241-8.

DOI: 10.1016/j.plantsci.2004.07.039

Alexander A, Singh VK, Mishra A. Halotolerant PGPR Stenotrophomonas maltophilia BJ01 induces salt tolerance by modulating physiology and biochemical activities of Arachis hypogea. Front Microbiol. 2020;11:568289.

DOI: 10.3389/fmicb.2020.568289, PMID 33162950.

Tuna AL, Kaya C, Dikilitas M, Higgs D. The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ Exp Bot. 2008;62(1):1-9.

DOI: 10.1016/j.envexpbot.2007.06.007

Barry CS. The stay-green revolution: Recent progress in deciphering the mechanisms of chlorophyll degradation in higher plants. Plant Sci. 2009;176(3): 325-33.

DOI: 10.1016/j.plantsci.2008.12.013

Mia MAB, Shamsuddin ZH, Wahab ZH, Marziah M. Rhizobacteria as bioenhancer and biofertilizer for growth and yield of banana (Musa spp. cv. ”Berangan”). Sci Hortic. 2010;126(2):80-7.

DOI: 10.1016/j.scienta.2010.06.005

Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic Acid in microbial and microorganism plant signaling. FEMS Microbiol Rev. 2007;31(4):425-48.

DOI: 10.1111/j.1574-6976.2007.00072.x, PMID 17509086.

Lambrecht M, Okon Y, Vande Broek A, Vanderleyden J. Indole-3-acetic acid: A reciprocal signalling molecule in bacteria–plant interactions. Trends Microbiol. 2000; 8(7):298-300.

DOI: 10.1016/S0966-842X(00)01732-7, PMID 10878760.

Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, et al. Genome survey and characterization of endophyt bacteria exhibiting a beneficial effect on growth and development of poplar. Appl Environ Microbiol. 2009; 75(3):748-57.

DOI: 10.1128/AEM.02239-08, PMID 19060168.

  • Abstract View: 193 times
    PDF Download: 78 times

Download Statistics

Downloads

Download data is not yet available.
  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission

Information

  • For Readers
  • For Authors
  • For Librarians

Current Issue

  • Atom logo
  • RSS2 logo
  • RSS1 logo


Copyright © 2010 - 2023 Microbiology Research Journal International. All rights reserved.