Microbial Perspectives on Polythene Biodegradation: Exploring the Role of Microorganisms in Addressing Plastic Pollution

M. Muthukumaran *

Department of Botany, Ramakrishna Mission, Vivekananda College (Autonomous), (Affiliated to the University of Madras), Chennai - 600004, Tamil Nadu, India.

A. Aswartha Narayana

Faculty of Aquaculture, Andhra Kesari University Ongole, Andhra Pradesh -523001, India.

A. Dilip Babu

Department of Zoology and Aquaculture, Acharya Nagarjuna University Guntur, Andhra Pradesh 522510, India.

Amogha K.R

Department of Aquaculture, College of Fisheries, Mangalore, Karnataka Veterinary Animal and Fisheries Science University, Bidar, India.

Wankasaki Lytand

Department of Microbiology, Shillong College, Shillong, India.

G. Gomadhi

Krishi Vigyan Kendra, Tindivanam, Villupuram district, Tamil Nadu, Pin Code: 604 102, India.

S. Jaya Prabhavathi

Regional Research Station, Tamil Nadu Agricultural University, Vridhachalam, 606 001 Cuddalore District, Tamil Nadu, India.

G. Malathi

Krishi Vigyan Kendra, Sandhiyur, Salem - 636 203, Tamil Nadu, India.

Abhijit Debnath

Krishi Vigyan Kendra Dhalai, Tripura, -799278 India.

*Author to whom correspondence should be addressed.


Plastic pollution, particularly from polythene (polyethylene), has emerged as a significant environmental concern worldwide. In response to this challenge, microbial perspectives on polythene biodegradation have garnered attention as potential solutions to mitigate plastic pollution. This article provides an overview of the mechanisms underlying microbial polythene biodegradation, including surface erosion, biofilm formation, metabolic pathways, synergistic interactions, and adaptation. Furthermore, it explores the diversity of polythene-degrading microorganisms and their roles in plastic degradation across different environments. Environmental factors influencing polythene biodegradation, such as temperature, pH, moisture, and nutrient availability, are discussed, along with strategies to optimize degradation rates. Biotechnological approaches, including microbial consortia development and genetic engineering, are highlighted as promising avenues to enhance polythene degradation efficiency. The article concludes with a discussion on the potential of microbial perspectives to address plastic pollution and outlines future research directions in this field.

Keywords: Microplastics, degradation, pathways, microbial degradation, environmental impact, plastic pollution, fragmentation, biomass production, mineralization, microorganisms, environmental degradation, biodegradation, enzymatic processes, carbon compounds, sustainable waste management

How to Cite

Muthukumaran , M., Narayana , A. A., Babu , A. D., Amogha K.R, Lytand , W., Gomadhi , G., Prabhavathi , S. J., Malathi , G., & Debnath , A. (2024). Microbial Perspectives on Polythene Biodegradation: Exploring the Role of Microorganisms in Addressing Plastic Pollution. Microbiology Research Journal International, 34(5), 18–28. https://doi.org/10.9734/mrji/2024/v34i51443


Download data is not yet available.


Danso D, Chow J, Streit WR. Plastics: Environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology. 2019;85(19):e01095-19.

Liaqat S, Hussain M, Malik MF, Aslam A, Mumtaz K. Microbial ecology: A new perspective of plastic degradation. Pure and Applied Biology. 2020;9(4):2138-2150.

Purohit J, Chattopadhyay A, Teli B. Metagenomic exploration of plastic degrading microbes for biotechnological application. Current Genomics. 2020;21(4):253-270.

Cf SF, Rebello S, Mathachan Aneesh E, Sindhu R, Binod P, Singh S, Pandey A. Bioprospecting of gut microflora for plastic biodegradation. Bioengineered. 2021;12(1):1040-1053.

Oliveira J, Belchior A, da Silva VD, Rotter A, Petrovski Ž, Almeida PL, Gaudêncio SP. Marine environmental plastic pollution: Mitigation by microorganism degradation and recycling valorization. Frontiers in Marine Science. 2020;7:567126.

Carr CM, Clarke DJ, Dobson AD. Microbial polyethylene terephthalate hydrolases: Current and future perspectives. Frontiers in Microbiology. 2020;11:571265.

Brueckner T, Eberl A, Heumann S, Rabe M, Guebitz GM. Enzymatic and chemical hydrolysis of poly (ethylene terephthalate) fabrics. J. Polym. Sci. Part A 46. 2008;6435–6443.

DOI: 10.1002/pola.22952

Cam Y, Alkim C, Trichez D, Trebosc V, Vax A, Bartolo F, et al. Engineering of a synthetic metabolic pathway for the assimilation of (d)-Xylose into value-added chemicals. ACS Synth. Biol. 2016;5:607–618.

DOI: 10.1021/acssynbio.5b00103

Carniel A, Valoni É, Nicomedes J, Gomes ADC, Castro AMD. Lipase from Candida antarctica (CALB) and cutinase from Humicola insolens act synergistically for PET hydrolysis to terephthalic acid. Process Biochem. 2017;59:84–90.

DOI: 10.1016/j.procbio.2016.07.023

Carta D, Cao G, D’Angeli C. Chemical recycling of poly(ethylene terephthalate) (pet) by hydrolysis and glycolysis. Environ. Sci. Pollut. Res. 2003;10:390–394.

DOI: 10.1065/espr2001.12.104.8

Chen CC, Han X, Ko TP, Liu W, Guo RT. Structural studies reveal the molecular mechanism of PETase. FEBS J. 2018; 285:3717–3723.

DOI: 10.1111/febs.14612

Chen S, Su L, Chen J, Wu J. Cutinase: Characteristics, preparation, and application. Biotechnol. Adv. 2013;31: 1754–1767.

DOI: 10.1016/j.biotechadv.2013.09.005

Chen S, Tong X, Woodard RW, Du G, Wu J, Chen J. Identification and characterization of bacterial cutinase. J. Biol. Chem. 2008;283:25854–25862.

DOI: 10.1074/jbc.M800848200

Chen Z, Wang Y, Cheng Y, Wang X, Tong S, Yang H, et al. Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Sci. Total Environ. 2020;709:136138.

DOI: 10.1016/j.scitotenv.2019.136138

Child J, Willetts A. Microbial metabolism of aliphatic glycols bacterial metabolism of ethylene glycol. Biochim. Biophys. Acta. 1978;538:316–327.

DOI: 10.1016/0304-4165(78)90359-8

da Costa JP, Mouneyrac C, Costa M, Duarte AC, Rocha-Santos T. The role of legislation, regulatory initiatives and guidelines on the control of plastic pollution. Front. Environ. Sci. 2020;8:104.

DOI: 10.3389/fenvs.2020.00104

Danso D, Chow J, Streit WR. Plastics: Microbial degradation, environmental and biotechnological perspectives. Appl. Environ Microbiol. 2019;85:AEM.01095–1019.

Gong J, Duan N, Zhao X. Evolutionary engineering of Phaffia rhodozyma for astaxanthin-overproducing strain. Front. Chem. Sci. Eng. 2012;6:174–178.

DOI: 10.1007/s11705-012-1276-3

Gong J, Kong T, Li Y, Li Q, Li Z, Zhang J. Biodegradation of microplastic derived from poly (ethylene terephthalate) with bacterial whole-cell biocatalysts. Polymers. 2018;10:1326.

DOI: 10.3390/polym10121326

Sangameshwar R, Rasool A, Venkateshwar, C. (2020). Effect of heavy metals on leafy vegetable (Trigonella foenum-graecum L.) and its remediation. Plant Archives, 20(2), 1941-1944.

Griswold KE, Mahmood NA, Iverson BL, Georgiou G. Effects of codon usage versus putative 5′-mRNA structure on the expression of Fusarium solani cutinase in the Escherichia coli cytoplasm. Protein Expr. Purif. 2003;27:134–142.

DOI: 10.1016/S1046-5928(02)00578-8

Groeninckx G, Berghmans H, Overbergh N, Smets G. Crystallization of poly (ethylene terephthalate) induced by inorganic compounds. I. Crystallization behavior from the glassy state in a low-temperature region. J. Polym. Sci. 1974;12:303–316.

DOI: 10.1002/pol.1974.180120207

Guebitz GM, Cavaco-Paulo A. Enzymes go big: Surface hydrolysis and functionalisation of synthetic polymers. Trends Biotechnol. 2008;26:32–38.

DOI: 10.1016/j.tibtech.2007.10.003

Danso D, Schmeisser C, Chow J, Zimmermann W, Wei R, Leggewie C, et al. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl. Environ. Microbiol. 2018;84:e02773-17.

Demirel B, Yaraş A, Elçiçek H. Crystallization behavior of PET materials. BAÜ Fen. Bil. Enst. Dergisi. Cilt. 2011;13:26–35.

Dodd D, Mackie RI, Cann IK. Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes. Mol. Microbiol. 2011;79:292–304.

DOI: 10.1111/j.1365-2958.2010.07473.x

Hahladakis JN, Iacovidou E, Gerassimidou S. Chapter 19 - plastic waste in a circular economy. in plastic waste and recycling, ed. T. M. Letcher (Cambridge, MA: Academic Press). 2020;481–512. DOI: 10.1016/b978-0-12-817880-5.00019-0

Rasool A, Mir MI, Zulfajri M, Hanafiah MM, Unnisa SA, Mahboob M. Plant growth promoting and antifungal asset of indigenous rhizobacteria secluded from saffron (Crocus sativus L.) rhizosphere. Microbial Pathogenesis. 2021;150:104734.

Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018;344:179–199.

DOI: 10.1016/j.jhazmat.2017.10.014

Sultana N, Saini PK, Kiran SR, Kanaka S. Exploring the antioxidant potential of medicinal plant species: A comprehensive review. Journal of Plant Biota; 2023.

Donelli I, Freddi G, Nierstrasz VA, Taddei P. Surface structure and properties of poly-(ethylene terephthalate) hydrolyzed by alkali and cutinase. Polym. Degrad. Stab. 2010;95:1542–1550.


Eberl A, Heumann S, Brückner T, Araujo R, Cavaco-Paulo A, Kaufmann F, et al. Enzymatic surface hydrolysis of poly (ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. J. Biotechnol. 2009;143:207–212.

DOI: 10.1016/j.jbiotec.2009.07.008

Elangovan S, Pandian SBS, Geetha S, Joshi SJ. Polychlorinated Biphenyls (PCBs): Environmental fate, challenges and bioremediation. in Microbial Metabolism of Xenobiotic Compounds. New York, NY: Springer. 2019;165–188.

Farzi A, Dehnad A, Fotouhi AF. Biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process. Biocatal. Agricult. Biotechnol. 2019;17:25–31.

DOI: 10.1016/j.bcab.2018.11.002

Fecker T, Galaz-Davison P, Engelberger F, Narui Y, Sotomayor M, Parra LP, et al. Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase. Biophys. J. 2018;114:1302–1312.

DOI: 10.1016/j.bpj.2018.02.005

Franden MA, Jayakody LN, Li W-J, Wagner NJ, Cleveland NS, Michener WE, et al. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization. Metab. Eng. 2018;48:197–207.

DOI: 10.1016/j.ymben.2018.06.003

Frazee RW, Livingston DM, LaPorte DC, Lipscomb JD. Cloning, sequencing, and expression of the Pseudomonas putida protocatechuate 3, 4-dioxygenase genes. J. Bacteriol. 1993;175: 6194–6202.

DOI: 10.1128/jb.175.19.6194-6202.1993

Furukawa M, Kawakami N, Oda K, Miyamoto K. Acceleration of enzymatic degradation of poly (ethylene terephthalate) by surface coating with anionic surfactants. Chem Sus Chem. 2018; 11: 4018–4025.

DOI: 10.1002/cssc.201802096

Hajighasemi M, Tchigvintsev A, Nocek B, Flick R, Popovic A, Hai T, et al. Screening and characterization of novel polyesterases from environmental metagenomes with high hydrolytic activity against synthetic polyesters. Environ. Sci. Technol. 2018;52:12388–12401.

DOI: 10.1021/acs.est.8b04252

Han X, Liu W, Huang J-W, Ma J, Zheng Y, Ko TP, et al. Structural insight into catalytic mechanism of PET hydrolase. Nat. Commun. 2017;8:2106.

Handelsman J. Metagenomics: Application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 2004;68:669–685.

DOI: 10.1128/MMBR.68.4.669-685.2004

Herrero Acero E, Ribitsch D, Dellacher A, Zitzenbacher S, Marold A, Steinkellner G, et al. Surface engineering of a cutinase from Thermobifida cellulosilytica for improved polyester hydrolysis. Biotechnol. Bioeng. 2013;110:2581–2590.

DOI: 10.1002/bit.24930

Herrero Acero E, Ribitsch D, Steinkellner G, Gruber K, Greimel K, Eiteljoerg I, et al. Enzymatic surface hydrolysis of PET: Effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecules. 2011;44:4632–4640.

DOI: 10.1021/ma200949p

Rasool A, Kanagaraj T, Mir MI, Zulfajri M, Ponnusamy VK, Mahboob M. Green coalescence of CuO nanospheres for efficient anti-microbial and anti-cancer conceivable activity. Biochemical Engineering Journal. 2022;187:108464.

Hiraga K, Taniguchi I, Yoshida S, Kimura Y, Oda K. Biodegradation of waste PET. EMO Rep. 2019;20:e49365.

Hosaka M, Kamimura N, Toribami S, Mori K, Kasai D, Fukuda M, et al. Novel tripartite aromatic acid transporter essential for terephthalate uptake in Comamonas sp. strain E6. Appl. Environ. Microbiol. 2013;79:6148–6155.

DOI: 10.1128/aem.01600-13

Arpana, K K Gill, Samanpreet Kaur, Kavita Bhatt and S S Sandhu. Decadal Analysis of Rainy Days and Extreme Rainfall Events in Different Agroclimatic Zones of Punjab. Agriculture Archives; 2024.


Huang X, Cao L, Qin Z, Li S, Kong W, Liu Y. Tat-independent secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis 168 mediated by its native signal peptide. J. Agricult. Food Chem. 2018;66:13217–13227.

DOI: 10.1021/acs.jafc.8b05038

Igiri BE, Okoduwa SI, Idoko GO, Akabuogu EP, Adeyi AO, Ejiogu IK. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. J. Toxicol. 2018: 2568038.

Jaeger K-E, Ransac S, Dijkstra BW, Colson C, van Heuvel M, Misset O. Bacterial lipases. FEMS Microbiol. Rev. 1994;15:29–63.

Furukawa M, Kawakami N, Tomizawa A, Miyamoto K. Efficient degradation of poly(ethylene terephthalate) with thermobifida fusca cutinase exhibiting improved catalytic activity generated using mutagenesis and additive-based approaches. Sci. Rep. 2019;9:16038.

DOI: 10.1038/s41598-019-52379-z

Gamerith C, Zartl B, Pellis A, Guillamot F, Marty A, Acero EH, et al. Enzymatic recovery of polyester building blocks from polymer blends. Process Biochem. 2017; 59:58–64.

DOI: 10.1016/j.procbio.2017.01.004

Garside M. Global PET bottle production 2004-2021; 2019.

Available: https://www.statista.com/statistics/723191/production-of-polyethylene-terephthalate-bottles-worldwide/

Accessed on: October 04, 2020.

Jaya Prabhavathi S, Subrahmaniyan K, Senthil Kumar M, Gayathry G, Malathi G. Exploring the Antibacterial, Anti-Bioilm, and Anti-Quorum Sensing Properties of Honey: A Comprehensive Review. Agriculture Archives; 2023. DOI: https://doi.org/10.51470/AGRI.2023.2.3.10

Islam MS, Rahman MM, Paul NK. Arsenicinduced morphological variations and the role of phosphorus in alleviating arsenic toxicity in rice (Oryza sativa L.). Plant Science Archives. 2016;1(1):1-10.

Niranjana C. Characterization of bacteriocin from lactic acid bacteria and its antibacterial activity against Ralstonia solanacearum causing tomato wilt. Plant Science Archives; 2016.