The Rise of Fungi: Evidence on the Global Scale. Old Known Silences or Mysterious Threats to the Planet

Main Article Content

Diniz Pereira Leite Júnior
Gisela Lara da Costa
Elisangela Santana de Oliveira Dantas
Diana Costa Nascimento
Debora Moreira
Ronaldo Sousa Pereira
Regina Teixeira Barbieri Ramos
Mário Mendes Bonci
Margareth Léa da Silva Maia
Rinaldo Ferreira Gandra
Marcos Ereno Auler
Marcia de Souza Carvalho Melhem
Claudete Rodrigues Paula

Abstract

Introduction: Fungi are organisms that present themselves in multicellular macroscopic and unicellular microscopic forms. They are eukaryotic, heterotrophic, reproduce asexually/sexually, cosmopolitan, achlorophyllates and are present in various climatic conditions and found in a variety of species and forms in nature.

Aims: Present the emerging evolution of fungi, their underreporting, scale and parameters that show their potential as a heterotrophic organism, decomposer and pathogen.

Methodology: In this review, we conducted a search emphasizing themes about fungi using the available databases and based on the scientific literature, we discussed a series of recent issues involving this wide realm and the constant controversies and expectations that guide the existence of fungi on the planet.

Results: The results presented show an analysis of the action of these eukaryotic organisms and their interaction with other living beings, the constant changes in taxonomy, their pathogenic potential in plants and animals, issues related to the intrinsic resistance of some species to drugs and also the potential biotechnological for which these organisms demonstrate high plasticity.

Conclusion: The expansion of fungal diseases to the fauna and flora of the planet; leads us to believe that, unless measures are taken to reinforce biosafety issues, it will be increasingly necessary to take care of the health conditions of the planet to avoid a global collapse caused by microscopic beings.

Keywords:
Mycology, pathogens, fungi kingdom, tropical diseases, fauna and flora.

Article Details

How to Cite
Júnior, D. P. L., Costa, G. L. da, Dantas, E. S. de O., Nascimento, D. C., Moreira, D., Pereira, R. S., Ramos, R. T. B., Bonci, M. M., Maia, M. L. da S., Gandra, R. F., Auler, M. E., Melhem, M. de S. C., & Paula, C. R. (2020). The Rise of Fungi: Evidence on the Global Scale. Old Known Silences or Mysterious Threats to the Planet. Microbiology Research Journal International, 30(10), 18-49. https://doi.org/10.9734/mrji/2020/v30i1030272
Section
Review Article

References

Morens DM, Folkers GK, Fauci AS. The challenge of emerging and reemerging infectious diseases. Nature. 2004; 430:242–49.

Berbee ML, James TY, Strullu-Derrien C. Early diverging fungi: Diversity and impact at the dawn of terrestrial life. Annu. Rev. Microbiol. 2017;71:41–60. Available: https://doi.org/10.1146/annurev-micro-030117-020324

Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484(7393):186–194. Available: https://doi:10.1038/nature10947.

Rokas A, Mead ME, Steenwyk JL, Raja HA, Oberlies NH. Biosynthetic gene clusters and the evolution of fungal chemodiversity. Nat. Prod. Rep. In Press. 2020;37:868-78. Available:https://doi:10.1039/C9NP00045C

Sidrim JJC, Rocha MFG. Medical mycology in the light of contemporary authors. Rio de Janeiro: Guanabara Koogan; 2004.

Lacaz CS, Porto E, Martins JEC, Heins-Vaccari EM, Mello NT. Treated on Medical Mycology - Lacaz. 9th ed. São Paulo: Savier; 2002.

Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804-10. Available: https://doi.org/10.1038/nature06 244.

Bisby GR, Ainsworth GC. The numbers of fungi. T Brit Mycol Soc. 1943;26:16–19.

Martin GW. The numbers of fungi. Pro Iowa Aca Sci. 1951;58(1):175–178. Access in 28 Jul 2020. Available: https://scholarworks.uni.edu/pias /vol58 /iss1/18

Hawksworth DL. The fungal dimension of biodiversity–magnitude, significance and conservation. Mycol Res. 1991;95:641–55. Available: https://doi.org/10.1016/S0953-7562(09)80810-1

Blackwell M. The Fungi: 1, 2, 3 … 5.1 million species? Am J Bot. 2011;98:426–438. Available:https://doi:10.3732/ajb.1000298.

Hawksworth DL, Luecking R. Fungal diversity revisited 2.2 to 3.8 million species. Microbiol Spectr. 2017; 5(4). Available:https://doi:10.1128/microbiolspec.FUNK-0052-2016

Wu B, Hussain M, Zhang W, Stadler M, Liu X, Xiang M. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology. 2019;10(3):127- 140. Available: https://doi:10.1080/21501203. 2019.1614106.

Furuse Y. Analysis of research intensity on infectious disease-by-disease burden reveals which infectious diseases are neglected by researchers. PNAS. 2019;116(2):478-483. Available:https://doi.org/10.1073/pnas.1814484116.

Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, et al. Outline of Fungi and fungus-like taxa. Mycosphere. 2020;11(1):1060–1456. Available:https://doi:10.5943/mycosphere/ 11/1/8

Tedersoo L, Sánchez–Ramírez S, Koljalg U, Bahram M, Doring M, Schigel D, May T, Ryberg M, Abarenkov K. High–level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Diversity. 2018;90:135–159. Available:https://doi.org/10.1007/s13225-018-0401-0

Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, et al. Notes for genera: Basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). Fungal Diversity. 2018;92:43–129. Available: https://doi.org/10.1007/s13225-018-0409-5

James TY, Stajich JE, Hittinger CT, Rokas A. Toward a Fully Resolved Fungal Tree of Life. Annual Rev Microbiol. 2020;74:1. Available:https://doi.org/10.1146/annurev-micro-022020-051835.

Hagen F, Ceresini P.C, Polacheck I, Ma H, Van Nieuwerburgh F, Gabaldón T, et al. Ancient dispersal of the human fungal pathogen Cryptococcus gattii from the Amazon rainforest. PLoS ONE. 2013;8(8):e71148. Available:https://doi.org/10.1371/journal.pone.0071148

Vieira CA, Almeida CHLN, Lambertini C, Leite D. SL, Toledo LF. First record of Batrachochytrium dendrobatidis in Paraná, Brazil. Herpetological Review. 2012;43(1): 93–94.

Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R, Fisher MC, Woeltjes A, Bosman W, Chiers K, Bossuyt F, Pasmans F. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sei USA. 2013;110:15325–9. Available: https://doi:10.1073/pnas.13073 56110

Ossiboff RJ, Towe AE, Brown MA, Longo AV, Lips KR, Miller DL, Carter ED, Gray MJ, Frasca Jr S. Differentiating Batrachochytrium dendrobatidis and B. salamandrivorans in Amphibian Chytridiomycosis using RNAScope in situ Hybridization. Front. Vet. Sci. 2019;12. Available:https://doi.org/10.3389/fvets.2019.00304.

Trivedi J, Lachapelle J, Vanderwolf KJ, Misra V, Willis CKR, Ratcliffe JM, Ness RW, Anderson JB, Kohna LM. Fungus causing white-nose syndrome in bats accumulates genetic variability in North America with no sign of recombination. mSphere. 2019;2(4):e00271-17. Available:https://doi.org/10.1128/mSphere Direct.00271-17.

Lemieux-Labonté, Simard A, Willis CKR, Lapointe FJ. Enrichment of beneficial bacteria in the skin microbiota of bats persisting with white-nose syndrome. Microbiome. 2017;5:115. Available:https://doi.org/10.1186/s40168-017-0334-y.

González-Gonzalez A. Histoplasma capsulatum and Pneumocystis spp. Co-intection in wild Bats from Argentina, French Guyana, and Mexico. BMC Microbiol. 2014;14(23):1-8. Available: https://doi:10.1186/1471-2180-14-23

Tencate LN, Táparo CV, Carvalho C, Bosco SMG, Queiroz LH, Silva DC, Perri SHV, Marinho M. Study of gastrointestinal fungal flora of bats (Mammalia, Chiroptera) of the northwest region of São Paulo state: Zoonotic potential. Braz. J. Vet. Res. Anim. Sci. 2012;49(2):146-15. Available:https://doi.org/10.11606/issn.2318-3659.v49i2p146-152.

Akbar H, Pinçon C, Aliouat-Denis CM, Derouche S, Taylor ML, Pottier M, Carrto-Binaghi LH, González-González AE, Courpon A, Barriel V, Guillot J, Chabé M, Suarez-Alvarez RO, Aliouat EM, Dei-Cas E, Demanche C. Characterizin Pneumocystis in the lungs of bats: Understanding Pneumocystis evolution and the spread of Pneumocystis organisms in mammal poplatuions. App Env Microbiol. 2012;78(22):8122-36. Available: https://doi:10.1128/AEM.01791-12

Ratnieks FLW, Carreck NL. Clarity on honey bee collapse? Science. 2010; 327(5962):152-3. Available: https://doi:10.1126/science.11 85563

Sarmiento-Ramírez JM, Abella E, Martín MP, Telleria MT, López-Jurado LF, Marco A, Diéguez-Uribeondo J. Fusarium solani is responsible for mass mortalities in nests of loggerhead sea turtle, Caretta caretta, in Boavista, Cape Verde. FEMS Microbiology Letters. 2010;312(2):192–200. Available: https://doi.org/10.1111/j.1574-6968.2010.02116.x

Kim K, Harvell CD. The rise and fall of a six-year coral-fungal epizootic. Am Nat. 2004;164 5(5):S52–S63. Available: https://doi:10.1086/424609

Ávila RA, Mancera PFA, Estevac L, Pied MR, Ferreira CP. Traveling waves in the lethargic crab disease. Appl Math Comput. 2012;218(19):9898–9910. Available: https://doi.org/10.1016/ j.amc. 2012.03.076

Rodrigues AM, Hoog GS, Zhang Y, Camargo ZP. Emerging sporotrichosis is driven by clonal and recombinant Sporothrix species. Emerg. Microbes Infect. 2014;3(5):e32. Available: https://doi:10.1038/emi.2014.33.

Paiva MT, Oliveira CSF, Romero R, Bastos CV, Lecca LO, Azevedo MI, et al. Spatial association between sporotrichosis in cats and in human during a Brazilian epidemics. Prev Vet Med. 2020;183: 105125. Available: https://doi.org/10.1016/j.preve tmed.2020.105125

Barrs VR, van Doorn TM, Houbraken J, Kidd SE, Martin P, Pinheiro MD, Richardson M, Varga J, Samson RA. Aspergillus felis sp. nov., an Emerging Agent of Invasive Aspergillosis in humans, cats, and dogs. PLoS ONE. 2013;8(6): e64871. Available: https://doi.org/10.1371/journal. pone.0064871.

Rodrigues ML, Nosanchuk JD. Fungal diseases as neglected pathogens: A wake-up call to public health officials. PLOS Neg Trop Dis. 2020;14(2). Available: https://doi.org/10.1371/journal. pntd.0007964

WHO. World Health Organization. From neglected diseases to neglected populations: To reach the un-reached: Report of the regional sensitization workshops on implementation of integrated disease prevention and control interventions/Compiled by M. Nanyunja, WHO Uganda, D. Mbulamberi, Mo H. Uganda and N. Zagaria, WHO Geneva. Geneva: World Health Organization; 2005. Acessed in: 17 Jul 2020. Available:https://apps.who.int/iris/handle/10665/69859

GAFFI. Global Action Fund for Fungal Infections; 2020. [Internet 2020]. Access in 05 Ago 2020. Available:https://www.gaffi.org/why/fungal-disease-frequency/

Médecins Sans Frontières. Access to Essential Medicines Campaign and the Drugs for Neglected Diseases Working Group. Fatal Imbalance: The Crisis in Research and Development for Drugs for Neglected Diseases. Brussels: Medecins Sans Frontieres; 2001. Available: https://www.msf.org/fatal-imba lance-crisis-research-and-development-drugs-neglected-diseases

WHO. World Health Organization. Commission on Macroeconomics and Health. Macroeconomics and health: Investing in health for economic development. Geneva: WHO. 2001;1-200. Access in: 18 Ago 2020. Available: https://apps.who.int/iris/handle/ 10665/42463

Woolhouse MEJ, Gowtage-Sequeria S. Host range and emerging and reemerging pathogens. Emerging Infect. Dis. 2005;11:1842–47. Available: https://doi:10.3201/eid1112.05 0997

Giacomazzi J, Baethgen L, Carneiro LC, Millington MA, Denning DW, Colombo A, Pasqualotto AC. The burden of serious human fungal infections in Brazil. Mycoses. 2016;59(3):145-50. Available: https://doi:10.1111/myc.12427

Molloy SF, Chiller T, Greene GS, Burry J, Govender NP, Kanyama C, et al. A Cryptococcal meningitis: A neglected NTD? PLOS Neglected Tropical Diseases. 2017;11(6). Available: https://doi:10.1371/journal.pntd. 0005575

Nature Microbiology. Stop neglecting fungi. Nat Microbiol. 2017;2:17120. Available:https://doi.org/10.1038/nmicrobiol.2017.120

BRASIL. Ministry of Health. Health Surveillance Secretariat. Neglected diseases in Brazil: vulnerability and challenges. In BRAZIL. Ministry of Health. Health Brazil 2017. An analysis of the health situation and the challenges to achieve the Sustainable Development Goals. Brasilia: Ministry of Health; 2018. Available:http://bvsms.saude.gov.br/bvs/publicacoes/saude_brasil_2017_analise_ situacao_saude_desafios_objetivos_desenvolvimento_sustetantavel.pdf Accessed in 28 Jul 2020

WHO. World Health Organization. Neglected tropical diseases; 2017. Accessed 28 Jul 2019 Available: https://www.who.int/neglected_ diseases/diseases/en/.

McCarthy MW, Walsh TJ. Drug development challenges and strategies to address emerging and resistant fungal pathogens. Expert Rev. Anti. Infect. Ther. 2017;15(6):577–584. Available: https://doi:10.1080/14787210. 2017.1328279

De Hoog GS, Dukik K, Monod M, Packeu A, Stubbe D, Hendrickx M, Kupsch C, Stielow JB, Freeke JM, Goker M, Rezaei-Matehkolaei A, Mirhendi H, Gräser Y. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia. 2017;182:5–31. Available: https://doi:10.1007/s11046-016-0073-9

Gugnani HC. Nodermatophytic filamentous keratinophilic fungi and their role in human infection. Polish J Environ Stud. 2003;12:461-6.

Viani FC, Dos Santos JI, Paula CR, Larson CE, Gambale W. Production of extracelular enzymes by Microsporum canis and their role in its virulence. Medical Mycology. 2001;39:463-468. Available: https://doi:10.1080/mmy.39.5.4 63.468

Silva BCM, Paula CR, Auler ME, Ruiz LS, Santos JI, Yoshioka MCN, Fabris A, Castro LGM, Duarte AJS, Gambale W. Dermatophytosis and immunovirological status of HIV-infected and AIDS patients from Sao Paulo city, Brazil. Mycoses. 2014;57:371–376. Available: https://doi.org/10.1111/myc.12 169.

Wu LC, Sun PL, Chang YT. Extensive deep dermatophytosis cause by Trichophyton rubrum in a patient with liver cirrhosis and chronic renal failure. Mycopathologia. 2013;176:457–462. Available: https://doi:10.1007/s11046-013-9696-2

Libon F, Nikkels-Tassoudji N, Dezfoulian B, Arrese JE, Nikkels AS. Non-dermatophyte dermatoses mimicking dermatophytoses in humans. Mycopathologia. 2017;182:101–111. Available: https://doi:10.1007/s11046-016-0059-7.

Moraes RG, Leite IC, Goulart EG. Moraes – Parasitology & Human Micology. Ed. Guanabara Koogan – Cultura Médica. 5ª. Ed. Rio de Janeiro, RJ. 2008;608.

Adesiji YO, Omolade FB, Aderibigbe IA, Ogungbe O, Adefioye OA, Adedokun SA, Adekanle MA, Ojedele R. Prevalence of Tinea capitis among children in Osogbo, Nigeria, and the associated risk Factors. Diseases. 2019;7(1):13. Available: https://doi:10.3390/diseases701 0013

Kadhim OH. The incidence of dermatophytosis in Babylon Province, Iraq. Med J Babylon. 2018;15(3):234-237.

Sharma R, Shouche Y. Nannizzia graeserae sp. nov., a new dermatophyte of geophilic clade isolated from vicinity of a barbershop in India. Kavaka. 2018;50:14–20.

Borman AM, Szekely A, Fraser M, et al. A novel dermatophyte relative, Nannizzia perplicata sp. nov., isolated from a case of tinea corporis in the United Kingdom. Med Mycol; 2018. Available: http:///doi.org/10.1093/mmy/myy 099

Dukik K, de Hoog S, Stielow JB, Freeke J, Gerrits van den Ende B, Vicente VA, Menken SBJ, Ahmed SA. Molecular and phenotypic characterization of Nannizzia (Arthrodermataceae). Mycopathologia; 2020. Available: https://doi.org/10.1007/s11046-019-00336-9

Zhang ZY, Han YF, Chen WH, Liang ZQ. Phylogeny and taxonomy of three new Ctenomyces (Arthrodermataceae, Onygenales) species from China. MycoKeys. 2019;47:1–16. Available:https://doi.org/10.3897/mycokeys.47.30740

L’Ollivier C, Ranque S. MALDI–TOF-based dermatophyte identification. Mycopathology. 2017;182:183-192. Available:https://doi:10.1007/s11046-016-0080-x

CDC. Centers for Disease Control and Prevention. Fungal Diseases; 2019. Access in: 27 Jul 2020 Available:https://www.cdc.gov/fungal/index.html

Kurtzman CP, Fell JW, Boekhout T. The yeasts: A taxonomic study, 5th Edition. Elsevier, Amsterdam, the Netherlands; 2011.

Khawcharoenporn T, Apisarnthanarak A, Mundy LM. Non-neoformans cryptococcal infections: A systematic review. Infection. 2007;35(2):51-58. Available: https://doi:10.1007/s15010-007-6142-8

Byrnes III EJ, Li W, Lewit Y, Ma H, Voelz K, Ren P, Carter DA, Chaturvedi V, Bildfell RJ, May RC, Heitman J. Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States. PLoS Pathog. 2010;6(4):e1000850. Available:https://doi.org/10.1371/journal.ppat.1000850

Hagen F, Boekhout T. The search for the natural habitat of Cryptococcus gattii. Mycopathologia. 2010;170:209–211. Available: https://doi.org/10.1007/s11046-010-9313-6

Montagna MT, Donno A. Caggiano G, Serio F, Giglio O, Bagordo F, D’Amicis RT, Lockhar SR, Cogliati M. Molecular characterization of Cryptococcus neoformans and Cryptococcus gattii from environmental sources and genetic comparison with clinical isolates in Apulia, Italy. Environmental Research. 2018;160:347-352. Available: https://doi.org/10.1016/j.envres. 2017.09.032

Colom MF, Frasés S, Ferrer C, et al. First case of human cryptococcosis due to Cryptococcus neoformans var. gattii in Spain. J Clin Microbiol. 2005;43(7):3548-50. Available: https://doi:10.1128/JCM.43.7.35 48-3550.2005

Velegraki A, Klosses VG, Pitsouni H, Toukas D, Daniilidis VD, Legakis NJ. First report of Cryptococcus neoformans var. gattii serotype B from Greece. Med. Mycol. 2001;39(5):419-422. Available: https://doi.org/10.1080/mmy.39. 5.419.422

Baró T, Torres-Rodríguez JM., De Mendoza MH, Morera Y, Alía C. First identification of autochthonous Cryptococcus neoformans var. gattii isolated from goats with predominantly severe pulmonary disease in Spain. J Clin Microbiol. 1998;36(2):458-61. Available:https://doi:10.1128/JCM.36.2.458-461.1998

Ellis DH, Pfeiffer TJ. Natural habitat of Cryptococcus neoformans var. gattii. J Clin Microbiol. 1990;28:1642–4.

Springer DJ, Chaturvedi V. Projecting global occurrence of Cryptococcus gattii. Emerg Infect Dis. 2010;16:14–20. Available: https://doi:10.3201/eid1601.090 369

Kidd SE, Chow Y, Mak S, Back PJ, Chen H, Hingston OA, Kronstad JW, Bartlett KH. Characterization of environmental sources of the human and animal pathogen Cryptococcus gattii in British Columbia, Canada, and the Pacific Northwest of the United States. Appl Environm Microbiol. 2007;73:1433–43. Available: https://doi:10.1128/AEM.01330-06

Farrer RA, Chang M, Davis MJ, van Dorp L, Yang DH, Shea T, Sewell TR, Meyer W, Balloux F, Edwards HM, Chanda D, Kwenda G, Vanhove M, Chang YC, Cuomo CA, Fisher MC, Kwon-Chung KJ. A new lineage of Cryptococcus gattii (VGV) discovered in the Central Zambezian Miombo Woodlands. mBio. 2019;10:e02306-19. Available: https://doi.org/10.1128/mBio.02 306-19

Kwon-Chung KJ, Fraser JA, Doering TL, Wang Z, Janbon G, Idnurm A, Bahn YS. Cryptococcus neoformans and Cryptococcus gattii, the Etiologic Agents of Cryptococcosis. Cold Spring Harbor Persp Med. 2014;4(7):a019760. Available:https://doi.org/10.1101/cshperspect.a019760

Meyer W, Castañeda A, Jackson S, Huynh M, Castañeda E, Group ICS. Molecular typing of IberoAmerican Cryptococcus neoformans isolates. Em Infec Dis. 2003;9:189-195. Available:https://doi.org/10.3201/eid0902.020246

Boekhout T, Theelen B, Diaz M, Fell JW, Hop WC, Abeln EC, Dromer F, Meyer W. Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans. Microbiology. 2001;147:891- 907. Available: https://doi:10.1099/00221287-14 7-4-891

D’Souza CA, Kronstad JW, Taylor G, Warren R, Yuen M, Hu G, Jung WH, et al. Genome Variation in Cryptococcus gattii, an emerging pathog immunocompetent hosts. mBio, 2011;2(1):e00342. Available:https://doi.org/10.1128/mBio.00342-10

Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, Falk R, Parnmen SH, Lumbsch T, Boekhout T. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genetics and Biology. 2015;78:16-48. Available:https://doi.org/10.1016/j.fgb.2015.02.009

Firacative C, Trilles L, Meyer W. MALDI-TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex. PLoS One. 2012;7:e37566. Available: https://doi:10.1371/journal.pone. 0037566

Hagen F, Lumbsch HT, Arsic Arsenijevic V, Badali H, Bertout S, et al. Importance of resolving fungal nomenclature: The case of multiple pathogenic species in the Cryptococcus genus. mSphere. 2017;2:e00238-17. Available:https://doi.org/10.1128/mSphere.00238-17

Litvintseva AP, Thakur R, Vilgalys R, Mitchell T. Multiple focus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (serotype A), including a single population in Botswana. Genetics. 2006;172:2223-38. Available: https://doi:10.1534/genetics.10 5.046672

Desjardins CA, Giamberardino C, Sykes SM, Yu CH, Tenor JL, Chen Y, Yang T, Jones AM, Sun S, Haverkamp MR, Heitman J, Litvintseva AP, Perfect JR, Cuomo CA. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. Genome Res. 2017;27:1207-19. Available: https://doi:10.1101/gr.21872 7.116

Vanhove M, Beale MA, Rhodes J, Chanda D, Lakhi S, Kwenda G, Molloy S, Karunaharan N, Stone N, Harrison TS, Bicanic T, Fisher MC. The genomic epidemiology of Cryptococcus yeasts identifies adaptation to environmental niches underlying the infection in an African HIV/AIDS cohort. Mol Ecol. 2017;26:1991-2005. Available: https://doi:10.1111/mec.13891

Samarasinghe H, You M, Jenkinson TS, Xu J, James TY. Hybridization facilitates adaptive evolution in two major fungal pathogens. Genes (Basel). 2020;11(1):101. Available: https://doi:10.3390/genes1101 0101

Aaron PA, Vu K, Gelli A. An antivirulence approach for preventing Cryptococcus neoformans from crossing the blood-brain barrier via novel natural product inhibitors of a fungal metalloprotease. mBio. 2020;11(4):e01249-20. Available:https:doi:10.1128/mBio.01249-20

Scheneider R, Diehl C, Santos FM, Piffer AC, Garcia AWA, Kulmann MIR, Schrank A, Kmetzch L, Vainstrein MH, Staats CC. Effects of zinc transporters on Cryptococcus gattii virulence. Sci Rep. 2015;5:10104. Available: https://doi.org/10.1038/srep10 104

Fernandes KE, Payne RJ, Carter DA. Lactoferrin-derived peptide lactofungin is potently synergistic with amphotericin B. Antimicrob Agents Chemother; 2020. Available: https://doi:10.1128/AAC.00842-20

Garcia AWA, Kinskovski UP, Diehl C, Vieira JC, Souza HM, Pinto HB, Trntin DS, Oliveira HC, Rodrigues ML, Becker EM, Kmetzscha L, Vainstein MH, Staats CC. Participation of Zip3, a ZIP domain-containing protein, in stress response and virulence in Cryptococcus gattii. Fungal Genet Biol. 2020;144. Available: https://doi.org/10.1016/j.fgb. 2020.103438

Wheat JW, Azar MH, Bahr NC, Spec A, Relich RF, Hage C. Histoplasmosis. Infect Dis Clin North Am. 2016;30(1):207–27. Available: https://doi:10.1016/jidc.2015. 10.009

Sepúlveda VE, Márquez R, Turissini DA, Goldman WE. Genome sequences reveal cryptic speciation in the human pathogen Histoplasma capsulatum. mBio. 2017;8(6):e01339-17. Available: https://doi:10.1128/mBio.01339-17

Pfaller MA, Andes DR, Diekema DJ, Horn DL, Reboli AC, Rotstein C, Franks B, Azie NE. Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients: Data from the Prospective Antifungal Therapy (PATH) Registry 2004-2008. PloS One. 2014;9(7):e101510. Available: https://doi:10.1371/journal.pone. 0101510

Bassetti M, Righi E, Ansaldi F, Merelli M, Scarparo C, Antonelli, et al. A multicenter multinational study of abdominal candidiasis: Epidemiology, outcomes and predictors of mortality. Intens Care Med. 2015;41(9):1601–10. Available: https://doi:10.1007/s00134-015-3866-2

Córdoba S, Vivot W, Bosco-Borgeat ME, Taverna C, Szusz W, Murisengo O, Isla G, Davel G, National Network of Mycology Laboratories. Species distribution and susceptibility profile of yeasts isolated from blood cultures: Results of a multicenter active laboratory-based surveillance study in Argentina. Rev Arg Microbiol. 2011;43(3):176–185. Available: https://doi:10.1590/S0325-7541 2011000300003

Emara M, Ahmad S, Khan Z, Joseph L, Al-Obaid I, Purohit P, Bafna R. Candida auris Candidemia in Kuwait, 2014. Emerg Infect Dis. 2015;21(6):1091–92. Available:https://doi.org/10.3201/eid2106.150270

Ramos LS, Branquinha MH, Santos ALS. Different classes of hydrolytic enzymes produced by multidrug-resistant yeasts comprising the Candida haemulonii complex. Medical Mycology. 2017;55(2):228–32. Available:https://doi.org/10.1093/mmy/myw065

Arikan S, Darka O, Hascelik G, Gunalp A. Identification of Candida dubliniensis strains using heat tolerance tests, morphological characteristics and molecular methods. Mikrobiyol Bul. 2003;37(1):49-57. Turkish

Sullivan DJ, Westerneng TJ, Haynes KA, Bennett DE, Coleman DC. Candida dubliniensis sp. nov.: Phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiology. 1995;141:1507-21. Available: https://doi.org/10.1099/135008 72-141-7-1507

Ataides FS, Costa CR, Santos AS, Freitas VAQ, Silva TC, Zara ALSA, Jesuino RSA, Silva MRR. In vitro characterization of virulence factors among species of the Candida parapsilosis complex. Rev. Soc. Bras. Med. Trop. 2020;53. Available: http://dx.doi.org/10.1590/0037-8682-0336-2019

Enache-Angoulvant A, Guitard J, Grenouillet F, Martin T, Durrens P, Fairhead C, Hennequin C. Discriminação rápida entre Candida glabrata, Candida nivariensis e Candida bracarensis pelo uso de PCR singleplex. J Clin Microbiol. 2011;49(9):3375-3379. Available: https://doi.org/10.1128/JCM.006 88-11

Cedejas-Bueno E, Kolecka A, Alastruey-Izquierdo A, Theelen B, Groenewald M, Kostrzewa M, Cuenca-Estrella M, Gómez-Lopez A, Boekhout T. Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: Three multiresistant human pathogenic yeasts. J Clin Microbiol. 2012;50(11):3641-3651. Available:https://doi.org/10.1128/JCM.02248-12

Cortegiani A, Misseri G, Fasciana T, Giammanco A, Giarratano A, Chowdhary A. Epidemiology, clinical characteristics, resistance, and treatment of infections by Candida auris. J. Intens Care. 2018;6:69. Available: https://doi.org/10.1186/s40560-018-0342-4

Satoh K, Makimura K, Hasumi Y, Nishiyama Y, Uchida K, Yamaguchi H. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol Immunol. 2009;53(1):41-4.

Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin Infect Dis. 2017;64:134–140. Available: https://doi:10.1093/cid/ciw691

CDC. Center of disease control and prevention. Candida auris; 2020. Access in: 28 Jul 2020. Available:https://www.cdc.gov/fungal/candida-auris/tracking-c-auris.html?CDCAArefV al=https%A%2F%2Fwww.cdc.gov%2Ffungal%2Fdiseases%2Fcandidiasis2Ftracking-c-auris.html

Chowdhary A, Sharma C, Meis JF. Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 2017;13:e1006290. Available: https://doi.org/10.1371/journal.p pat.1006290

Robert V, Cardinali G, Casadevall A. Distribution and impact of yeast thermal tolerance permissive for mammalian infection. BMC Biol. 2015;13:18. Available: https://doi:10.1186/s12915-015-0127-3

Casadevall A, Kontoyiannis DP, Robert V. On the emergence of Candida auris: Climate change, azoles, swamps, and birds. mBio. 2019;23:10(4):1-7. Available: https://doi.org/10.1128/mbio.01 397-19

Osland MJ, Gabler CA, Grace JB, Day RH, McCoy ML, McLeod JL, From AS, Enwright NM, Feher LC, Stagg CL, Hartley SB. Climate and plant controls on soil organic matter in coastal wetlands. Glob Change Biol. 2018;24:5361–5379. Available: https://doi.org/10.1111/gcb.143 76

Stone W, Jones BL, Wilsenach J, Botha A. External ecological niche for Candida albicans within reducing, oxygen-limited zones of wetlands. Appl Environ Microbiol. 2012;78:2443–2445. Available: https://doi:10.1128/AEM.06343-11

Yue H, Bing J, Zheng Q, Zhang Y, Hu T, Du H, Wang H, Huang G. Filamentation in Candida auris, an emerging fungal pathogen of humans: passage through the mammalian body induces a heritable phenotypic switch. Emerg Microbes Infect. 2018;7:188. Available: https://doi.org/10.1038/s41426-018-0187-x

Tits J, Cools F, Creme K, Brucker K, Berman J, Vergruggen K, Gevaert B, Cos P, Cammue BPA, Thevissen K. Combination of miconazole and domiphen bromide is fungicidal against biofilms of resistant Candida spp. Antimicro Agents Chemot. 2020;AAC.01296-20. Available: https://doi.org/10.1128/AAC.012 96-20

Graham CE., Cruz MR, Garsin DA, Lorens MC. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. PNAS. 2017;114(17):4507-12. Available:https://doi.org/10.1073/pnas.1620432114

Barreto TL, Rossato L, Duarte AL, Meis JF, Lopes LB, Colombo AL. Ishida K. Miltefosine as an alternative strategy in the treatment of the emerging fungus Candida auris. Int J. Antimicrob Agents. 2020;56(2). Available:https://doi.org/10.1016/ j.ijantimicag.2020.106049

Brasil. Agência Nacional de Vigilância Sanitária (ANVISA). Risk Alert GVIMS/GGTES/Anvisa no 01/2020. Identification of a possible case of Candida auris in Brazil; 2020. Available: https://www.gov.br/anvisa/pt-br/ centraisdeconteudo/publicacoes/servicosdesaude/risk-communications-1/alert-01-2020-candida-auris-07-12-2020.pdf/view Access on 08 Dec 2020

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wi Y, Li H, Wu X, Xu J, Tu S, Zhang, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020; 395(10229):1054-62. Available: https://doi.org/10.1016/S0140-6736(20)30566-3

Song G, Liang G, Liu W. Fungal co-infections associated with Global COVID-19 pandemic: A clinical and diagnostic perspective from China. Mycopathologia. 2020;31:1-8. Available: https://doi:10.1007/s11046-020-00462-9

Koehler P, Cornely OA, Bottiger BW, Dusse F, Eichenauer DA, Fuchs F, Hallek M, Jung N, Kleina F, Persigehl T, Rybniker J, Kochanek M, Boll B, Shimabukuro-Vornhagen A. COVID‐19 associated pulmonary aspergillosis. Mycoses. 2020;63(6):528-534. Available:https://doi.org/10.1111/myc.13096

Lu Q, Jiang W, Zhang X, Li H, Zhang X, Zeng H, Du J, Yang G, Zhang L, Li R, Fang L, Li H, Liu W. Comorbidities for fatal outcome among the COVID-19 patients: A hospital-based case-control study. J Infect. 2020;30507-7. Available:https://doi.org/10.1016/j.jinf.2020.07.026

Chen X, Liao B, Cheng L, Peng X, Xu X, Li Y, Hu T, Li J, Zhou X, Ren B. The microbial coinfection in COVID-19. Appl Microbiol Biotechnol. 2020;104(18):7777-85. Available: https://doi.org/10.1007/s00253-020-10814-6

Santana MF, Pivoto G, Alexandre MAA, Baia da Silva DC, Borba MGS, Val FA, Brito-Sousa JD, et al. Confirmed invasive pulmonary aspergillosis andvCOVID-19: The value of postmortem findings to support antemortem management. J Braz Soc Trop Med. 2020;53:(e20200401). Available: https://doi.org/10.1590/0037-86 82-0401-2020

Macedo PM, Freitas DFS, Varon AG, Lamas CDC, Ferreira LCF, Freitas AD, Ferreira MT, Nunes EP, Siqueira MM, Veloso VG, Valle ACF. COVID-19 and acute juvenile paracoccidioidomycosis coinfection. PLoS Negl Trop Dis. 2020;14(8):e0008559. Available:https://doi.org/10.1371/journal.pntd.0008559

Nazik H, Sass G, Déziel E, Stevens DA. Aspergillus is inhibited by Pseudomonas aeruginosa volatiles. J. Fungi. 2020;6(3):118. Available:https://doi.org/10.3390/jof6030118

Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. British J Exp Pathology. 1929;10(3):226-236.

Cragg GM, Newman DJ. Natural products: A continuing source of novel drug leads. Biochim Biophys Acta. 2013;1830(6):3670-95. Available: https://doi.org/10.1016/j.bbagen. 2013.02.008

Philippoussis AN. Production of mushrooms using agro-industrial residues as substrates. Biotechnology for agro-industrial residues utilisation. Springer Netherlands. 2009;163-96. Available: https://doi.org/10.1007/978-1-40 20-9942-7_9

Calvo AM, Wilson RA, Bok JW, Keller NP. Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev. 2002;66(3):447-459. Available:https://doi.org/10.1128/mmbr.66.3.447-459.2002

Seraman S, Aravindan R, Viruthagiri T. Statistical optimization of anticholesterolemic drug lovastatin production by the red mold Monascus purpureus. Food and Bioproducts Processing. 2010;88(2):266-76. Available:https://doi.org/10.1016/j.fbp.2010.01.006

Sharma R, Katoch M, Srisvastava PS, Qazi GN. Approaches for refining heterologous protein production in filamentous fungi. World J Microbiol Biotechnol. 2009;25(12):2083-94. Available: https://doi.org/10.1007/s11274-009-0128-x

Wang L, Ridgway D, Gu T, Moo-Yang M. Bioprocessing strategies to improve heterologous protein production in filamentous fungal fermentations. Biotechnology Advances. 2005;23(2):115-129. Available:https://doi.org/10.1016/j.biotechadv.2004.11.001

Bracarense AAP, Takahashi JA. Modulation of antimicrobial metabolites production by the fungus Aspergillus parasiticus. Braz J Microbiol. 2014;45(1):313-321. Available: https://doi.org/10.1590/S1517-8 3822014000100045

Bohórquez SMA, García-Rico RO. Effect of different stress conditions on the vegetative growth of the filamentous fungus Acremonium chrysogenum. Bistua. 2019;17(2):182-195. Available:https://doi.org/10.24054/01204211.v2.n2.2019.3535

Hu Y, Zhu B. Study on genetic engineering of Acremonium chrysogenum, the cephalosporin C producer. Synt Syst Biotechnol. 2016;1-7. Available:https://doi:10.1016/j.synbio.2016.09.002

Isaac CE, Jones A, Pickard MA. Production of cyclosporins by Tolypocladium niveum strains. Antimicrob Agents Chemother. 1990;34(1):121-7. Available: https://doi.org/10.1128/aac.34. 1.121

Eira AF, Kaneno R, Rodrigues Filho E, Barbisan LF, Pascholati SF, Di Piero RM. Salvadori DMF, Lima PLA, Ribeiro LR. Farming technology, biochemistry characterization, and protective effects of culinary-medicinal mushrooms Agaricus brasiliensis S. Wasser et al. and Lentinus edodes (Berk.) Singer: Five years of research in Brazil. Int J Med Mushrooms. 2005;7(1):281-299. Available: https://doi:10.1615/IntJMed Mushr.v7.i12.260

Vargas-Islal R, Ishikawa NK, Py-Daniel V. Ethnomycological contributions of indigenous peoples of the Amazon. Biota Amazônia. 2013;3(1):58-65. Available: http://dx.doi.org/10.18561/2179-5746

Fidalgo O. Mycological Knowledge of Brazilian Indians. Rev Antropol. 1968;16-17:27-34.

Dias DA, Urban S. HPLC and NMR Studies of phenoxazone alcaloids from Pycnoporus cinnabarinus. Natural Product Communications. 2009;4(4):489-98. Available:https://doi.org/10.1177/1934578X0900400409

Beresford NA, Fesenko S, Konoplev A, Skuterud L, Smithe JT, Vigtf G. Thirty years after the Chernobyl accident: What lessons have we learnt? J Environ Radioactivity. 2016;57:77-89. Available:https://doi.org/10.1016/j.jenvrad.2016.02.003

Blachowicz A, Chiang AJ, Elsaesser A, Kalkum M, Ehrenfreund P, Stajich JE, Torok T, Wang C, Venkateswaran K. Proteomic and metabolomic characteristics of extremophilic fungi under simulated mars conditions. Frontiers in Microbiology. 2019;10:1013;1-16. Available:https://doi.org/10.3389/fmicb.2019.01013

Dadachova E, Bryan RA, Huang X, Moadel T, Schweitzer AD, Aisen P, Nosanchuk JD, Casadevall A. Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi. PLoS ONE. 2007;2(5):e457. Available:https://doi.org/10.1371/journal.pone.0000457

Zhdanova NN, Tugay T, Dighton J, Zheltonozhsky V, McDermott P. Ionizing radiation attracts soil fungi. Mycol Res. 2004;108(9):1089-1096. Available: https://doi:10.1017/s095375620 4000966

Shunk GK, Gomez XR, Aversch NJHJ. A self-replicating radiation-shield for human deep-space exploration: Radiotrophic fungi can attenuate ionizing radiation aboard the International Space Station. bioRXiv. 2020.07.16.205534. Available:https://doi.org/10.1101/2020.07. 16.205534

Gonçalves VN, Cantrell CL, Wedge DE, Ferreira DE, Ferreira MC, Soares MA, Jacob MR, Oliveira FS, Galante D, Rodrigues F, Alves TMA, Zani CL, Júnior PAS, Murta S, Romanha AJ, Barbosa EC, Kroon EG, Oliveira JG, Gomez-Silva B, Galetovic A, Rosa CA, Rosa LH. Fungi associated with rocks of the Atacama Desert: Taxonomy, distribution, diversity, ecology and bioprospection for bioactive compounds. Environ Microbiol. 2016;18(1):232-45. Available: https://doi.org/10.1111/1462-29 20.13005

Purlschen AA, Rodrigues F, Duarte RTD, Araújo GG, Santiago IF, Paulino-Lima IG, Rosa CA, Kato MJ, Pellizari VH, Galante D. UV-resistant yeasts isolated from a high altitude volcanic area on the Atacama Desert as eukaryotics models for astrobiology. Microbiology Open. 2015; 4(4):574-88. Available: https://doi:10.1002/mbo3.262

Gonçalves VN, Oliveira FS, Carvalho CR, Schaefer CEGR, Rosa CA, Rosa LH. Antarctic rocks from continental Antarctica as source of potential human opportunistic fungi. Extremophiles. 2017; 21(5):851-860. Available: https://doi.org/10.1007/s00792-0 17-0947-x

Menezes GCA, Amorim SS, Gonçalves VN, Godinho VM, Simões JC, Rosa CA, Rosa LH. Diversity, distribution and ecology of fungi in seasonal antarctic snow. 2019;7(10):445. Available:https://doi:10.3390/microorganismos7100445

Cogliati M. Molecular epidemilogy of Cryptococcus neoformans and Cryptococcus gattii: An atlas of the molceular types. Hindawi Publishing Corporation Scienti. 2013;2-23. Available:http://dx.doi.org/10.1155/2013/675213.

Chen SCA, Meyer W, Sorrella TC. Cryptococcus gattii infections. American Society for Microbiology. Clin Microbiol Rew. 2014;980-1024. Available:https://doi.org/10.1128/CMR.00126-13