Unraveling the Complex Dynamics of Soil Microbiome Diversity and Its Implications for Ecosystem Functioning: A Comprehensive Review

Nitesh Kumar Singh

Department of Soil Science and Agricultural Chemistry, Narayan Institute of Agricultural Sciences, Gopal Narayan Singh University, Jamuhar, Sasaram, Bihar, India.

Avinash Kumar Rai *

KVK Ghazipur (Affiliated NDUAT Kumarganj), Ayodhya, India.

*Author to whom correspondence should be addressed.


Abstract

Soil microbiome diversity plays a pivotal role in shaping terrestrial ecosystems and the myriad functions. This comprehensive review delves into the intricate dynamics of soil microbial communities, exploring their composition, interactions, and responses to environmental factors. By synthesizing findings from cutting-edge research, we aim to elucidate the complex interplay between soil microbiome diversity and ecosystem functioning. We discuss the application of advanced techniques, such as high-throughput sequencing and metagenomic analysis, which have revolutionized our understanding of soil microbial diversity. The review highlights the influence of biotic and abiotic factors, including plant diversity, soil properties, climate, and land-use practices, on the structure and diversity of soil microbial communities. We examine the mechanisms through which soil microbes drive critical ecosystem processes, such as nutrient cycling, carbon sequestration, and plant productivity. The review also explores the resilience and adaptability of soil microbial communities in the face of global change pressures, such as climate change, land-use intensification, and biodiversity loss. We discuss the potential implications of altered soil microbiome diversity for ecosystem functioning and the provision of essential ecosystem services. Furthermore, we identify knowledge gaps and propose future research directions to advance our understanding of soil microbiome diversity and its role in maintaining healthy and productive ecosystems. This review provides a comprehensive framework for understanding the complex dynamics of soil microbiome diversity and underscores its critical importance in shaping the functioning and sustainability of terrestrial ecosystems in a changing world.

Keywords: Soil microbiome, microbial diversity, ecosystem functioning, environmental factors, global change


How to Cite

Singh, N. K., & Rai, A. K. (2024). Unraveling the Complex Dynamics of Soil Microbiome Diversity and Its Implications for Ecosystem Functioning: A Comprehensive Review. Microbiology Research Journal International, 34(3), 17–47. https://doi.org/10.9734/mrji/2024/v34i31434

Downloads

Download data is not yet available.

References

Fierer N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology. 2017;15(10):579-590. Available:https://doi.org/10.1038/nrmicro.2017.87

Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, Gonzalez A, Kosciolek T, McCall LI, McDonald D, Melnik AV, Morton JT, Navas J, Quinn RA, Sanders JG, Swafford AD, Thompson LR, Tripathi A, Xu ZZ, Dorrestein PC. Best practices for analysing microbiomes. Nature Reviews Microbiology. 2018;16(7):410-422. Available: https://doi.org/10.1038/s41579-018-0029-9

Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW. Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal. 2007;1(4):283-290. Available:https://doi.org/10.1038/ismej.2007.53

Vos M, Wolf AB, Jennings SJ, Kowalchuk GA. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiology Reviews. 2013;37(6):936-954. Available: https://doi.org/10.1111/1574-6976.12023

Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. The ISME Journal. 2012;6(5):1007-1017. Available:https://doi.org/10.1038/ismej.2011.159

Hill GT, Mitkowski NA, Aldrich-Wolfe L, Emele LR, Jurkonie DD, Ficke A, Maldonado-Ramirez S, Lynch ST, Nelson EB. Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology. 2000;15(1):25-36. Available: https://doi.org/10.1016/S0929-1393(00)00069-X

Sharpton TJ. An introduction to the analysis of shotgun metagenomic data. Frontiers in Plant Science. 2014;5:209. Available: https://doi.org/10.3389/fpls.2014.00209

Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S RRNA and 16S RRNA genes. Applied and Environmental Microbiology. 2006;72 (3):1719-1728. Available:https://doi.org/10.1128/AEM.72.3.1719-1728.2006

Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Villarreal Ruiz L, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Abarenkov K. Global diversity and geography of soil fungi. Science. 2014;346(6213):1256688. Available:https://doi.org/10.1126/science.1256688

Van Der Heijden MGA, Bardgett RD, Van Straalen NM. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters. 2008;11(3):296-310. Available:https://doi.org/10.1111/j.1461-0248.2007.01139.x

Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88(6):1354-1364. Available: https://doi.org/10.1890/05-1839

Bérdy J. Bioactive microbial metabolites. The Journal of Antibiotics. 2005;58(1):1-26. Available: https://doi.org/10.1038/ja.2005.1

Smith SE, Read DJ. Mycorrhizal symbiosis (3rd ed.). Academic Press; 2008. Available: https://doi.org/10.1016/B978-0-12-370526-6.X5001-6

Ettema CH, Wardle DA. Spatial soil ecology. Trends in Ecology and Evolution. 2002;17(4):177-183. Available:https://doi.org/10.1016/S0169-53 47(02)02496-5.

Vos M, Wolf AB, Jennings SJ, Kowalchuk GA. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiology Reviews. 2013;37(6):936-954. Available:https://doi.org/10.1111/1574-697 6.12023

Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences. 2006;103(3):626-631. Available:https://doi.org/10.1073/pnas.0507535103

Lauber CL, Ramirez KS, Aanderud Z, Lennon J, Fierer N. Temporal variability in soil microbial communities across land-use types. The ISME Journal. 2013;7(8):1641-1650. Available:https://doi.org/10.1038/ismej.2013.50

Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ. Microbial diversity in the deep sea and the underexplored rare biosphere. Proceedings of the National Academy of Sciences. 2006;103(32):12115-12120. Available:https://doi.org/10.1073/pnas.0605127103

Lynch MDJ, Neufeld JD. Ecology and exploration of the rare biosphere. Nature Reviews Microbiology. 2015;13(4):217-229. Available:https://doi.org/10.1038/nrmicro3400

Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Küsel K, Rillig MC, Rivett DW, Salles JF, Van Der Heijden MGA, Youssef NH, Zhang X, Wei Z, Hol WHG. Where less may be more: How the rare biosphere pulls ecosystems strings. The ISME Journal. 2017;11(4): 853-862. Available:https://doi.org/10.1038/ismej.2016.174

Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP, Mommer L. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports. 2017;7(1):44641 Available:https://doi.org/10.1038/srep44641

Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology. 2009;68(1):1-13. Available: https://doi.org/10.1111/j.1574-6941.2009.00654.x

Prober SM, Leff JW, Bates ST, Borer ET, Firn J, Harpole WS, Lind EM, Seabloom EW, Adler PB, Bakker JD, Cleland EE, DeCrappeo NM, DeLorenze E, Hagenah N, Hautier Y, Hofmockel KS, Kirkman KP, Knops JMH, La Pierre KJ, Fierer N. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecology Letters. 2015;18(1):85-95. Available:https://doi.org/10.1111/ele.12381

Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH. Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology. 2013;11(11):789-799. Available:https://doi.org/10.1038/nrmicro3109

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology. 2006;57:233- 266. Available:https://doi.org/10.1146/annurev.arplant.57.032905.105159

Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren Van Themaat E, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology. 2013;64:807-838. Available: https://doi.org/10.1146/annurev-arplant-050312-120106

Bonfante P, Anca IA. Plants, mycorrhizal fungi, and bacteria: A network of interactions. Annual Review of Microbiology. 2009;63:363-383. Available:https://doi.org/10.1146/annurev.micro.091208.073504

Bonkowski M. Protozoa and plant growth: The microbial loop in soil revisited. New Phytologist. 2004;162(3):617-631. Available: https://doi.org/10.1111/j.1469-8137.2004.01066.x

Clarholm M. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biology and Biochemistry. 1985;17(2):181-187. Available: https://doi.org/10.1016/0038-0717(85)90113-0

Scheu S. The soil food web: Structure and perspectives. European Journal of Soil Biology. 2002;38(1):11-20. Available: https://doi.org/10.1016/S1164-5563(01)01117-7.

Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences. 2006;103(3):626-631. Available:https://doi.org/10.1073/pnas.0507535103

Six J, Bossuyt H, Degryze S, Denef K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research. 2004;79(1):7-31. Available:https://doi.org/10.1016/j.still.2004.03.008

Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal. 2010;4(10):1340-1351. Avaiable:https://doi.org/10.1038/ismej.2010.58

Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Frontiers in Microbiology. 2012;3:348. Available:https://doi.org/10.3389/fmicb.2012.00348

Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW. Soil microbial community responses to multiple experimental climate change drivers. Applied and Environmental Microbiology. 2010;76(4):999-1007. Available:https://doi.org/10.1128/AEM.02874-09

Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology. 2007;88(6):1386-1394. Available: https://doi.org/10.1890/06-0219

Sheik CS, Beasley WH, Elshahed MS, Zhou X, Luo Y, Krumholz LR. Effect of warming and drought on grassland microbial communities. The ISME Journal. 2011;5(10):1692-1700. Available:https://doi.org/10.1038/ismej.2011.32

Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, Endale DM, Coleman DC, Whitman WB. Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology and Biochemistry. 2008;40(11):2843-2853. Available:https://doi.org/10.1016/j.soilbio.2008.07.030

Kulmatiski A, Beard KH. Long-term plant growth legacies overwhelm short-term plant growth effects on soil microbial community structure. Soil Biology and Biochemistry. 2011;43(4):823-830.

Singh JS, Gupta VK. Soil microbial biomass: A key soil driver in management of ecosystem functioning. Science of the Total Environment. 2018;634:497-500. Available:https://doi.org/10.1016/j.soilbio.2010.12.018

Bommarco R, Kleijn D, Potts SG. Ecological intensification: Harnessing ecosystem services for food security. Trends in Ecology and Evolution. 2013;28(4):230-238. Available:https://doi.org/10.1016/j.tree.2012.10.012

Bardgett RD, Van Der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515(7528):505-511.Available:https://doi.org/10.1038/nature13855

Wall DH, Nielsen UN, Six J. Soil biodiversity and human health. Nature. 2015;528(7580):69-76. Available:https://doi.org/10.1038/nature15744

De Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjørnlund L, Jørgensen HB, Brady MV, Christensen S, De Ruiter PC, d'Hertefeldt T, Frouz J, Hedlund K, Hemerik L, Hol WHG, Hotes S, Mortimer SR, Setälä H, Sgardelis SP, Bardgett RD. Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences. 2013;110(35):14296-14301. Available:https://doi.org/10.1073/pnas.1305198110

Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth's biogeochemical cycles. Science. 2008;320(5879):1034-1039. Available:https://doi.org/10.1126/science.1153213

Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478(7367):49-56. Available:https://doi.org/10.1038/nature10386

Robertson GP, Groffman PM. Nitrogen transformations. In E. A. Paul (Ed.), Soil Microbiology, Ecology and Biochemistry Academic Press. 2015;421-446. Available: https://doi.org/10.1016/B978-0-12-415955-6.00014-1

Richardson AE, Simpson RJ. Soil microorganisms mediating phosphorus availability. Plant Physiology. 2011;156(3):989-996. Available:https://doi.org/10.1104/pp.111.175448

Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH. Going back to the roots: The microbial ecology of the rhizosphere. Nature Reviews Microbiology. 2013;11(11):789-799. Available:https://doi.org/10.1038/nrmicro3109

Bardgett RD, Wardle DA. Aboveground-belowground linkages: Biotic interactions, ecosystem processes, and global change. Oxford University Press; 2010.

Wagg C, Bender SF, Widmer F, Van Der Heijden MGA. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences. 2014;111(14):5266-5270. Available:https://doi.org/10.1073/pnas.1320054111

Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS. Feeding habits in soil nematode families and genera—an outline for soil ecologists. Journal of Nematology. 1993;25(3):315-331.

Ferris H. Contribution of nematodes to the structure and function of the soil food web. Journal of Nematology. 2010;42(1): 63-67.

Moore JC, McCann K, De Ruiter PC. Modeling trophic pathways, nutrient cycling, and dynamic stability in soils. Pedobiologia. 2005;49(6):499-510. Available:https://doi.org/10.1016/j.pedobi.2005.05.008

Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van Der Putten WH, Wall DH. Ecological linkages between aboveground and belowground biota. Science. 2004;304(5677):1629-1633. Available: https://doi.org/10.1126/science.1094875

Hunt HW, Wall DH. Modelling the effects of loss of soil biodiversity on ecosystem function. Global Change Biology. 2002;8(1):33-50. Available: https://doi.org/10.1046/j.1365-2486.2002.00425.x

Serna-Chavez HM, Fierer N, Van Bodegom PM. Global drivers and patterns of microbial abundance in soil. Global Ecology and Biogeography. 2013;22(10):1162-1172. Available:https://doi.org/10.1111/geb.12070

Young IM, Crawford JW. Interactions and self-organization in the soil-microbe complex. Science. 2004;304(5677):1634-1637. Available:https://doi.org/10.1126/science.1097394

Six J, Bossuyt H, Degryze S, Denef K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research. 2004;79(1):7-31. Available:https://doi.org/10.1016/j.still.2004.03.008

Chau JF, Bagtzoglou AC, Willig MR. The effect of soil texture on richness and diversity of bacterial communities. Environmental Forensics. 2011;12(4):333-341. Available:https://doi.org/10.1080/15275922.2011.622348

Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences. 2006;103(3): 626-631. Available:https://doi.org/10.1073/pnas.0507535103

Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal. 2010;4(10):1340-1351. Available:https://doi.org/10.1038/ismej.2010.58

Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology. 2009;75(15):5111-5120. Available:https://doi.org/10.1128/AEM.00335-09

Rousk J, Brookes PC, Bååth E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology. 2009;75(6):1589-1596. Available:https://doi.org/10.1128/AEM.02775-08

Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Applied and Environmental Microbiology. 2001;67(9):4215-4224. Available:https://doi.org/10.1128/AEM.67.9.4215-4224.2001

Fierer N, Schimel JP, Holden PA. Variations in microbial community composition through two soil depth profiles. Soil Biology and Biochemistry. 2003;35(1):167-176. Available: https://doi.org/10.1016/S0038-0717(02)00251-1

Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Frontiers in Microbiology. 2012;3:348. Available:https://doi.org/10.3389/fmicb.2012.00348

Grandy AS, Neff JC. Molecular C dynamics downstream: The biochemical decomposition sequence and its impact on soil organic matter structure and function. Science of the Total Environment. 2008;404(2):297-307. Available:https://doi.org/10.1016/j.scitotenv.2007.11.013

Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. Global patterns in belowground communities. Ecology Letters. 2009;12(11):1238-1249. Available: https://doi.org/10.1111/j.1461-0248.2009.01360.x

Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Villarreal Ruiz L, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Abarenkov K. Global diversity and geography of soil fungi. Science. 2014;346(6213):1256688. Available:https://doi.org/10.1126/science.1256688

Pietikäinen J, Pettersson M, Bååth E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiology Ecology. 2005;52(1):49-58. Available:https://doi.org/10.1016/j.femsec.2004.10.002

Zhou J, Deng Y, Shen L, Wen C, Yan Q, Ning D, Qin Y, Xue K, Wu L, He Z, Voordeckers JW, Nostrand JDV, Buzzard V, Michaletz ST, Enquist BJ, Weiser MD, Kaspari M, Waide R, Yang Y, Brown JH. Temperature mediates continental-scale diversity of microbes in forest soils. Nature Communications. 2016;7(1):12083. Available:https://doi.org/10.1038/ncomms12083

Manzoni S, Schimel JP, Porporato A. Responses of soil microbial communities to water stress: Results from a meta-analysis. Ecology. 2012;93(4):930-938. Available:https://doi.org/10.1890/11-0026.1

Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, Quero JL, García-Gómez M, Gallardo A, Ulrich W, Bowker MA, Arredondo T, Barraza-Zepeda C, Bran D, Florentino A, Gaitán J, Gutiérrez JR, Huber-Sannwald E, Jankju M, Singh BK. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences. 2015;112(51):15684-15689. Available:https://doi.org/10.1073/pnas.1516684112

Zhou X, Fornara D, Wasson EA, Wang D, Ren G, Christie P, Jia Z. Effects of 44 years of chronic nitrogen fertilization on the soil nitrifying community of permanent grassland. Soil Biology and Biochemistry. 2015;91:76-83. Available:https://doi.org/10.1016/j.soilbio.2015.08.031

Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, García-Gómez M, Bowker MA, Soliveres S, Escolar C, García-Palacios P, Berdugo M, Valencia E, Gozalo B, Gallardo A, Aguilera L, Arredondo T, Blones J, Boeken B, Zaady E. Plant species richness and ecosystem multifunctionality in global drylands. Science. 2012;335(6065):214-218. Available:https://doi.org/10.1126/science.1215442

Sheik CS, Beasley WH, Elshahed MS, Zhou X, Luo Y, Krumholz LR. Effect of warming and drought on grassland microbial communities. The ISME Journal. 2011;5(10):1692-1700. Available: https://doi.org/10.1038/ismej.2011.32

Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JAM, Cregger MA, Moorhead LC, Patterson CM. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere. 2015;6(8):art130. Available: https://doi.org/10.1890/ES15-00217.1

Bardgett RD, Manning P, Morriën E, De Vries FT. Hierarchical responses of plant–soil interactions to climate change: Consequences for the global carbon cycle. Journal of Ecology. 2013;101(2):334-343. Available: https://doi.org/10.1111/1365-2745.12043

Hueso S, García C, Hernández T. Severe drought conditions modify the microbial community structure, size and activity in amended and unamended soils. Soil Biology and Biochemistry. 2012 Jul 1;50:167-73.

Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JAM, Cregger MA, Moorhead LC, Patterson CM. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere. 2015;6(8):art130. Available:https://doi.org/10.1890/ES15-00 217.1

Allison SD, Treseder KK. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology. 2008;14(12):2898-2909. Available: https://doi.org/10.1111/j.1365-2486.2008.01716.x

Bradford MA. Thermal adaptation of decomposer communities in warming soils. Frontiers in Microbiology. 2013;4:333. Available:https://doi.org/10.3389/fmicb.2013.00333

Luo C, Rodriguez-RLM, Johnston ER, Wu L, Cheng L, Xue K, Tu Q, Deng Y, He Z, Shi JZ, Yuan MM, Sherry RA, Li D, Luo Y, Schuur EAG, Chain P, Tiedje JM, Zhou J, Konstantinidis KT. Soil microbial community responses to a decade of warming as revealed by comparative metagenomics. Applied and Environmental Microbiology. 2014;80(5):1777-1786. Available:https://doi.org/10.1128/AEM.03712-13

Blankinship JC, Niklaus PA, Hungate BA. A meta-analysis of responses of soil biota to global change. Oecologia. 2011;165(3):553-565. Available: https://doi.org/10.1007/s00442-011-1909-0

Karhu K, Auffret MD, Dungait JAJ, Hopkins DW, Prosser JI, Singh BK, Subke JA, Wookey PA, Ågren GI, Sebastià MT, Gouriveau F, Bergkvist G, Meir P, Nottingham AT, Salinas N, Hartley IP. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature. 2014;513(7516):81- 84. Available:https://doi.org/10.1038/nature13604

DeAngelis KM, Pold G, Topçuoğlu BD, Van Diepen LTA, Varney RM, Blanchard JL, Melillo J, Frey SD. Long-term forest soil warming alters microbial communities in temperate forest soils. Frontiers in Microbiology. 2015;6:104. Available:https://doi.org/10.3389/fmicb.2015.00104

Feng J, He Z, Wilkin RT, Singh BK, Schramm A. Soil warming induced changes in vegetative and microbial community composition drive shifts in microbial carbon and nutrient cycling potential in Mediterranean-type ecosystems. Science of the Total Environment. 2021;759:143514. Available:https://doi.org/10.1016/j.scitotenv.2020.143514

Karhu K, Auffret MD, Dungait JAJ, Hopkins DW, Prosser JI, Singh BK, Subke JA, Wookey PA, Ågren GI, Sebastià MT, Gouriveau F, Bergkvist G, Meir P, Nottingham AT, Salinas N, Hartley IP. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature. 2014;513(7516):81-84. Available:https://doi.org/10.1038/nature13604

Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology. 2007;88(6):1386-1394. Available: https://doi.org/10.1890/06-0219

Manzoni S, Schimel JP, Porporato A. Responses of soil microbial communities to water stress: Results from a meta-analysis. Ecology. 2012;93(4):930-938. Available: https://doi.org/10.1890/11-0026.1

Canarini A, Kiær LP, Herbst FA, Dijkstra FA. Soil bacterial and fungal mortality components after drought exposure. Soil Biology and Biochemistry. 2021;156:108193. Available:https://doi.org/10.1016/j.soilbio.2021.108193

Schimel JP. Life in dry soils: Effects of drought on soil microbial communities and processes. Annual Review of Ecology, Evolution, and Systematics. 2018;49(1):409-432. Available:https://doi.org/10.1146/annurev-ecolsys-110617-062614

Guo X, Drury CF, Yang X, Reynolds WD, Zhang R. Effects of wetland age on soil respiration and carbon pool transfers in newly constructed wetlands. Soil Biology and Biochemistry. 2014;68:212-221. Available:https://doi.org/10.1016/j.soilbio.2013.09.031

Bardgett RD, Manning P, Morriën E, De Vries FT. Hierarchical responses of plant–soil interactions to climate change: Consequences for the global carbon cycle. Journal of Ecology. 2013;101(2):334- 343. Available:https://doi.org/10.1111/1365-2745.12043

Compant S, Van Der Heijden MGA, Sessitsch A. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiology Ecology. 2010;73(2):197-214. Available: https://doi.org/10.1111/j.1574-6941.2010.00900.x

Bardgett RD, Manning P, Morriën E, De Vries FT. Hierarchical responses of plant–soil interactions to climate change: Consequences for the global carbon cycle. Journal of Ecology. 2013;101(2):334-343. Available: https://doi.org/10.1111/1365-2745.12043

Compant S, Van Der Heijden MGA, Sessitsch A. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiology Ecology. 2010;73(2):197-214. Available:https://doi.org/10.1111/j.1574-6941.2010.00900.x

Geisen S, Bruelheide H, Heidrich L, Karlushok O, Maraun M, Schüßler A. Changes in soil fungal communities acting as potential drivers of soil structural dynamics after experimental drought in a temperate beech forest. FEMS Microbiology Ecology. 2021;97(2):fiab011. Available:https://doi.org/10.1093/femsec/fiab011

Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Hill SLL, Hoskins AJ, Lysenko I, Phillips HRP, Burton VJ, Chng CWT, Emerson S, Gao D, Pask-Hale G, Hutton J, Jung M, Sanchez-Ortiz K, Simmons BI, Purvis A. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science. 2016;353(6296):288-291. Available:https://doi.org/10.1126/science.aaf2201

Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, Endale DM, Coleman DC, Whitman WB. Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biology and Biochemistry. 2008;40(11):2843-2853. Available:https://doi.org/10.1016/j.soilbio.2008.07.030

Tripathi BM, Strickland MS, Edwards EJ, Tebbe CC, Grayston SJ. Functional soil genomic responses to agricultural land-use change across two climatically distinct regions. Molecular Ecology. 2021;30(5):1278-1293. Available:https://doi.org/10.1111/mec.15805

Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK. Global consequences of land use. Science. 2005;309(5734):570-574. Available:https://doi.org/10.1126/science.1111772

De Souza RC, Feng J, Boguzas DS, Russell BD, Klatt S, Tiedje JM, Buckley DH, Wardle DA. Soil microbiome shifts after land-use change are driven by plant community and soil properties. Nature Communications. 2021;12(1): 2959. Available: https://doi.org/10.1038/s41467-021-23113-3

Navarro-Noya YE, Gómez-Acata S, Montoya-Ciriaco N, Rojas-Valdez A, Suárez-Arriaga MC, Valenzuela-Encinas C, Jiménez-Bueno N, Verhulst N, Govaerts B, Dendooven L. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biology and Biochemistry. 2013;65:86-95. Available:https://doi.org/10.1016/j.soilbio.2013.05.009

Rodrigues JLM, Pellizari VH, Mueller R, Baek K, Jesus E Da C, Paula FS, Mirza B, Hamaoui GS, Tsai SM, Feigl B, Tiedje JM, Bohannan BJM, Nüsslein K. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proceedings of the National Academy of Sciences. 2013;110(3):988-993. Available:https://doi.org/10.1073/pnas.1220608110

Trivedi P, Delgado-Baquerizo M, Anderson IC, Singh BK. Response of soil properties and soil microbial communities to agriculture: Implications for primary productivity and soil health indicators. Frontiers in Plant Science. 2016;7:990. Available:https://doi.org/10.3389/fpls.2016.00990

Kuffner M, Hai B, Rattei T, Melodelima C, Schloter M, Zechmeister-Boltenstern S, Jandl R, Schindlbacher A, Sessitsch A. Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S RRNA gene pyrosequencing. FEMS Microbiology Ecology. 2012;82 (3):551-562. Available:https://doi.org/10.1111/j.1574-6941.2012.01420.x

Bünemann EK, Schwenke GD, Van Zwieten L. Impact of agricultural inputs on soil organisms—A review. Soil Research. 2006;44(4):379-406. Available: https://doi.org/10.1071/SR05125

Yang F, Zhang Q, Wang S, Xu M, Qian W, Li J, Jin H, Ye Z, Zhou J. Imbalance of the soil diazotrophic community is linked to prairie soil nitrogen limitation caused by long-term nitrogen deposition. Soil Biology and Biochemistry. 2020;146:107823. Available:https://doi.org/10.1016/j.soilbio.2020.107823

Nicol GW, Leininger S, Schleper C, Prosser JI. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environmental Microbiology. 2008;10(11):2966-2978. Available: https://doi.org/10.1111/j.1462-2920.2008.01701.x

Cycon M, Piotrowska-Seget Z, Kozdroj J, Zmysłowska A. Effect of synthetic and natural plant protection compounds on the structure of soil microbiome in long-term field experiments. Applied Soil Ecology. 2022;175:104487. Available:https://doi.org/10.1016/j.apsoil.2022.104487

Seghers D, Siciliano SD, Top EM, Verstraete W. Combined effect of fertilizer and herbicide applications on the abundance, community structure and performance of the soil methanotrophic community. Soil Biology and Biochemistry. 2005;37(2):187-193. Available:https://doi.org/10.1016/j.soilbio.2004.07.019

Puri AK, Percival Zhang SP. Mechanisms of microbial functional dynamics with respect to soil environmental factors. Frontiers in Microbiology. 2018;9:3232. Available:https://doi.org/10.3389/fmicb.2018.03232

Yan B, Li J, Xiao N, Qi Y, Fu G, Liu G, Qin M. Urban-biased distribution of disruptive green technologies from 1988 to 2015. Environmental Science and Technology. 2016;50(22):12820-12827. Available:https://doi.org/10.1021/acs.est.6b03537

Setälä H, Huhta V. Soil fauna increase Betula pendula growth: Laboratory experiments with coniferous forest floor. Ecology. 1991;72(2):665-671. Available: https://doi.org/10.2307/2937208

Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology. 2010;91(12):3463-3470. Available:https://doi.org/10.1890/10-0426.1

Deng Y, Jiang YH, Yang Y, He Z, Luo F, Zhou J. Molecular ecological network analyses. BMC Bioinformatics. 2012;13 (1):113. Available:https://doi.org/10.1186/1471-2105-13-113

Hawkes CV, Kivlin SN, Rocca JD, Huguet V, Thomsen MA, Suttle KB. Fungal community responses to precipitation. Global Change Biology. 2011;17(4):1637-1645. Available:https://doi.org/10.1111/j.1365-2486.2010.02327.x

Allison SD, Martiny JBH. Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences. 2008;105(Supplement 1):11512-11519. Available:https://doi.org/10.1073/pnas.0801925105

Meaden S, Metcalf CJE, Koskella B. Organismal and ecological mechanisms of microbial community stability in natural environments. BioRxiv. 2016;086711. Available: https://doi.org/10.1101/086711

Santos H, Da Costa MS, Romero FM. Osmotic stress adaptative mechanisms in microorganisms. In T. Satyanarayana S Das, B. Johri (Eds.), Microbial diversity in ecosystem sustainability and biotechnological applications: Volume 1: Microbial Diversity in Normal and Extreme Environments Springer Singapore. 2019;339-382. Available:https://doi.org/10.1007/978-981-13-8315-1_13

Trevors JT. Bacterial gene technology and transfer in the environment. In R. V. Miller (Ed.), Environmental Renaissance Springer. 1996;261-276. Available:https://doi.org/10.1007/978-3-642-60450-1_19

Ogawa N, DeRisi J, Brown PO. New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Molecular Biology of the Cell. 2000;11(12):4309-4321. Available:https://doi.org/10.1091/mbc.11.12.4309

Heidorn T, Camsund D, Huang HH, Lindberg P, Oliveira P, Stensjö K, Lindblad P, Lindberg P. Synthetic biology in cyanobacteria: Transcriptional gene circuits for in situ production and monitoring of biochemicals. In V. C. Pirrung (Ed.), Methods in Enzymology Academic Press. 2011;497: 539-563. Available: https://doi.org/10.1016/B978-0-12-385075-1.00024-X

Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem function. Ecology. 2007;88(6):1386-1394. Available: https://doi.org/10.1890/06-0219

Gougoulias C, Clark JM, Shaw LJ. The role of soil microbes in the global carbon cycle: Tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. Journal of the Science of Food and Agriculture. 2014;94(12):2362-2371. Available: https://doi.org/10.1002/jsfa.6577

Haferburg G, Kothe E. Microbes and metals: Interactions in the environment. Journal of Basic Microbiology. 2007;47(6):453-467. Available:https://doi.org/10.1002/jobm.200700279

Glassman SI, Weihe C, Li J, Albright MBN, Looby CI, Martiny AC, Treseder KK, Allison SD, Martiny JBH. Decomposition responses to climate depend on microbial community composition. Proceedings of the National Academy of Sciences. 2018;115(47):11994-11999. Available:https://doi.org/10.1073/pnas.1811269115

Delgado-Baquerizo M, Giaramida L, Reich PB, Khachane AN, Hamonts K, Edwards C, Lawton LA, Singh BK. Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. Journal of Ecology. 2016;104(4):936-946. Available: https://doi.org/10.1111/1365-2745.12585

Haferburg G, Kothe E. Microbes and metals: Interactions in the environment. Journal of Basic Microbiology. 2007;47(6):453-467. Available:https://doi.org/10.1002/jobm.200700279

Acosta-Martínez V, Dowd SE, Bell CW, Lascano R, Booker JD, Zobeck TM, Upchurch DR. Microbial community composition as affected by dryland cropping systems and tillage in a semiarid sandy soil. Diversity. 2010;2(6): 910-931. Available:https://doi.org/10.3390/d2060910

Martiny JBH, Jones SE, Lennon JT, Martiny AC. Microbiomes in light of traits: A phylogenetic perspective. Science. 2015;350(6261):aac9323. Available:https://doi.org/10.1126/science.aac9323

Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences. 2016;113(21):5970-5975. Available:https://doi.org/10.1073/pnas.1521291113

Riah-Anglet W, Trinsoutrot-Gattin I, Nesme X, Quénéhervé P. Impact of heat treatment used in soil disinfestations on soil microbial communities and functional resilience based on soil microcosms. Applied Soil Ecology. 2021;162:103896. Available:https://doi.org/10.1016/j.apsoil.2021.103896

De Vries FT, Griffiths RI, Knight CG, Hawkins NJ, Malik AA. Disruption of temporal dynamics in soil fungal communities exposed to heat disturbances. Soil Biology and Biochemistry. 2020;144:107759. Available:https://doi.org/10.1016/j.soilbio.2020.107759

Wall DH, Nielsen UN, Six J. Soil biodiversity and human health. Nature. 2015;528(7580):69-76. Available: https://doi.org/10.1038/nature15744

Bardgett RD, Van Der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515(7528):505-511. Available:https://doi.org/10.1038/nature13855

Delgado-Baquerizo M, Guerra CA, Cano-Díaz C, Egidi E, Wang JT, Eisenhauer N, Singh BK, Maestre FT. The proportion of soil-borne pathogens increases with warming at the global scale. Nature Climate Change. 2020;10(6):550-554. Available: https://doi.org/10.1038/s41558-020-0759-3

Van Der Heijden MGA, Bardgett RD, Van Straalen NM. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters. 2008;11(3):296-310. Available: https://doi.org/10.1111/j.1461-0248.2007.01139.x

Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth's biogeochemical cycles. Science. 2008;320(5879):1034-1039. Available:https://doi.org/10.1126/science.1153213

Wagg C, Schüβler A, Shahbaz M, Bahn M, Delgado‐Baquerizo M, Goslee S, Moore J, Zavalloni C, Wardle DA, Feliziani A. Disturbing soil organic matter alters terrestrial ecosystem functions. Global Change Biology. 2022;28(5):1705-1720. Available:https://doi.org/10.1111/gcb.16099

Walker TWN, Kaiser C, Strasser F, Herbold CW, Leblans NIW, Woebken D, Janssens IA, Sigurdsson BD, Richter A. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nature Climate Change. 2018;8(10):885-889. Available: https://doi.org/10.1038/s41558-018-0259-x

Allison SD, Wallenstein MD, Bradford MA. Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience. 2010;3(5):336- 340. Available: https://doi.org/10.1038/ngeo846

De Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, Hallin S, Kaisermann A, Keith AM, Kretzschmar M, Lemanceau P, Lumini E, Mason KE, Oliver A, Ostle N, Prosser JI, Thion C, Thomson B, Bardgett RD. Soil bacterial networks are less stable under drought than fungal networks. Nature Communications. 2018;9(1):3033. Available: https://doi.org/10.1038/s41467-018-05516-7

Wagg C, Bender SF, Widmer F, Van Der Heijden MGA. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences. 2014;111(14):5266-5270. Available:https://doi.org/10.1073/pnas.1320054111

Bardgett R, Van Der Putten WH. Soil microbial diversity and ecosystem functioning. In G. Wall (Ed.), Soil Ecology and Ecosystem Services. Oxford University Press. 2014;237-251. Available:https://doi.org/10.1093/acprof:oso/9780199575923.003.0016

Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health. Trends in Plant Science. 2012;17(8):478-486. Available:https://doi.org/10.1016/j.tplants.2012.04.001

Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology. 2009;68(1):1-13. Available: https://doi.org/10.1111/j.1574-6941.2009.00654.x

Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews. 2013;37(5):634-663. Available:https://doi.org/10.1111/1574-6976.12028

Schardl CL, Craven KD, Speight MR, Mahmood T, Istifadah N, McGee PA. An intraspecific fungal mutualism facilitated by intraspecific bacterial mutualism. Symbiosis. 2007;43(3):107-111.

Mahmood T, Aziz I, Samiya N, Mohsan A. Phytochemical estimation and virological assay of Ephedra alata (alata) growing in Pakistan. Recent Trends in Biochemistry and Biotechnology. 2011; 1(4):37-46.

Griffiths BS, Philippot L. Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews. 2013;37(2):112-129. Available:https://doi.org/10.1111/j.1574-6976.2012.00343.x

De Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, Hallin S, Kaisermann A, Keith AM, Kretzschmar M, Lemanceau P, Lumini E, Mason KE, Oliver A, Ostle N, Prosser JI, Thion C, Thomson B, Bardgett RD. Soil bacterial networks are less stable under drought than fungal networks. Nature Communications. 2018;9(1):3033. Available:https://doi.org/10.1038/s41467-018-05516-7

Krause S, le Roux X, Niklaus PA, Van Bodegom PM, Lennon JT, Bertilsson S, Grossart HP, Philippot L, Bodelier PLE. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Frontiers in Microbiology. 2014;5:251. Available:https://doi.org/10.3389/fmicb.2014.00251

Wall DH, Nielsen UN, Six J. Soil biodiversity and human health. Nature. 2015;528(7580):69-76. Available:https://doi.org/10.1038/nature15744

Lal R. Soil carbon sequestration impacts on global climate change and food security. Science. 2004;304(5677):1623-1627. Available:https://doi.org/10.1126/science.1097396

Singh BK, Munro S, Reid E, Ord B, Potts JM, Paterson E, Millard P. Investigating microbial community structure in soils by physiological, biochemical and molecular fingerprinting methods. European Journal of Soil Science. 2006;57(1):72-82. Available:https://doi.org/10.1111/j.1365-2389.2006.00760.x

Dodds WK, Chapin FS, Felton AJ, Fox SD, Hart SC, Kaye JP, Knops JMH, Palmer MA, Perakis SS, Pett-Ridge J, Walker LR, Smith WK, Webster JR, Zhang J. The soil data life cycle in research: Where do we start? Ecosphere. 2021;12(4):e03470. Available:https://doi.org/10.1002/ecs2.3470

Doran JW, Zeiss MR. Soil health and sustainability: Managing the biotic component of soil quality. Applied Soil Ecology. 2000;15(1):3-11. Available:https://doi.org/10.1016/S0929-1393(00)00067-6

Vukicevich E, Lowery T, Bowen P, Úrbez-Torres JR, Hart M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agronomy for Sustainable Development. 2016;36(3):48. Available:https://doi.org/10.1007/s13593-016-0385-7

Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S. The role of soil microorganisms in plant mineral nutrition—Current knowledge and future directions. Frontiers in Plant Science. 2017;8:1617. Available:https://doi.org/10.3389/fpls.2017.01617

Berruti A, Lumini E, Balestrini R, Bianciotto V. Arbuscular mycorrhizal fungi as natural biofertilizers: Let's benefit from past successes. Frontiers in Microbiology. 2016;6:1559. Available:https://doi.org/10.3389/fmicb.2015.01559

Jian H, Lu X, Zhai C, Gu D, Li F, Wang F, Gu S. Effects of the biocontrol bacteria Bacillus velezensis GB03 and bio-organic fertilizer on bacterial communities associated with the rhizosphere of watermelon root. Scientific Reports. 2021;11(1):7731. Available:https://doi.org/10.1038/s41598-021-87 052-5

Lori M, Symnaczik S, Mäder P, De Deyn G, Gattinger A. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. Plos One. 2017;12(7):e0180442. Available:https://doi.org/10.1371/journal.pone.0180442

Jose S. Agroforestry for ecosystem services and environmental benefits: An overview. Agroforestry Systems. 2009;76(1):1-10. Available:https://doi.org/10.1007/s10457-009-9229-7

Lehman RM, Cambardella CA, Stott DE, Acosta-Martinez V, Manter DK, Buyer JS, Maul JE, Smith JL, Collins HP, Halvorson JJ, Kremer R J, Lundgren JG, Ducey TF, Jin VL, Karlen DL. Understanding and enhancing soil biological health: The solution for reversing soil degradation. Sustainability. 2015;7(1):988-1027. Available:https://doi.org/10.3390/su7010988

Pulleman M, Creamer R, Hamer U, Helder J, Pelosi C, Pérès G, Rutgers M. Soil biodiversity, biological indicators and soil ecosystem services—An overview of European approaches. Current Opinion in Environmental Sustainability. 2012;4(5):529-538. Available:https://doi.org/10.1016/j.cosust.2012.10.009

Doran JW, Zeiss MR. Soil health and sustainability: Managing the biotic component of soil quality. Applied Soil Ecology. 2000;15(1):3-11. Available:https://doi.org/10.1016/S0929-1393(00)00067-6

Li F, Chen L, Zhang J, Aded Akhter D, Li B. Bioindicators and biological analyses to evaluate soil health. Biological Indicators of Soil Health. 2021;183-215. Available:https://doi.org/10.1016/B978-0-12-819189-2.00007-4

Schulz S, Brankatschk R, Dümig A, Kögel-Knabner I, Schloter M, Zeye J. The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences. 2013;10(6): 3983-3996. Available: https://doi.org/10.5194/bg-10-3983-2013

Karhu K, Auffret MD, Dungait JAJ, Hopkins DW, Prosser JI, Singh BK, Subke JA, Wookey PA, Ågren GI, Sebastià MT, Gouriveau F, Bergkvist G, Meir P, Nottingham AT, Salinas N, Hartley IP. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature. 2014;513(7516):81-84. Available:https://doi.org/10.1038/nature13604

Malik AA, Chowdhury S, Schlager V, Oliver A, Puissant J, Vazquez PGM, Jehmlich N, Von Bergen M, Griffiths RI, Gleixner G. Soil fungal: Bacterial ratios are linked to altered carbon cycling. Frontiers in Microbiology. 2016;7:1247. Available:https://doi.org/10.3389/fmicb.2016.01247

Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nature Microbiology. 2016;2(3):16242. Available:https://doi.org/10.1038/nmicrobiol.2016.242

Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil. Frontiers in Microbiology. 2012;3:348. Available: https://doi.org/10.3389/fmicb.2012.00348

Keeler BL, Gourevitch JD, Polasky S, Isbell F, Tessum CW, Hill JD, Marshall JD. The social costs of nitrogen. Science Advances. 2016;2(10):e1600219. Available:https://doi.org/10.1126/sciadv.1600219

Rocca JD, Simonin M, Blaszczak JR, Ernakovich JG, Gibbons SM, Midani FS, Washburne AD. The microbiome stress project: Toward a global meta-analysis of environmental stressors and their effects on microbial communities. Frontiers in Microbiology. 2020;11:555701. Available:https://doi.org/10.3389/fmicb.2020.555701

Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, Khare S, Khan ML. Soil microbiome: A key player for conservation of soil health under changing climate. Biodiversity and Conservation. 2019;28(8-9):2405-2429. Available:https://doi.org/10.1007/s10531-019-01760-5

Singh BK, Bardgett RD, Smith P, Reay DS. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nature Reviews Microbiology. 2010;8(11):779-790. Available:https://doi.org/10.1038/nrmicro2439

De Hollander M. Niches and networks: Explaining the cell-level distributions of genetic, metabolic, and regulatory networks in ecological communities. Frontiers in Microbiology. 2017;8:2383. Available:https://doi.org/10.3389/fmicb.2017.02383

Widder S, Allen RJ, Pfeiffer T, Curtis TP, Wiuf C, Sloan WT, Cordero OX, Brown SP, Momeni B, Shou W, Kettle H, Flint HJ, Haas AF, Laroche B, Kreft JU, Rainey PB, Freilich S, Schuster S, Milferstedt K, Soyer OS. Challenges in microbial ecology: Building predictive understanding of community function and dynamics. The ISME Journal. 2016;10(11):2557-2568. Available:https://doi.org/10.1038/ismej.2016.45

Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nature Climate Change. 2013;3(10):909-912. Available:https://doi.org/10.1038/nclimate1951

Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, Snoek BL, Fang S, Zhou G, Allison SD, Blair JM, Bridgham SD, Burton AJ, Carrillo Y, Reich PB, Clark JS, Classen AT, Dijkstra FA, Elberling B, Bradford MA. Quantifying global soil carbon losses in response to warming. Nature. 2016;540(7631):104-108. Available:https://doi.org/10.1038/nature20150

Treseder KK, Balser TC, Bradford MA, Brodie EL, Dubinsky EA, Eviner VT, Hofmockel KS, Lennon JT, Levine UY, MacGregor BJ, Pett-Ridge J, Waldrop MP. Integrating microbial ecology into ecosystem models: Challenges and priorities. Biogeochemistry. 2012;109(1-3):7-18. Available:https://doi.org/10.1007/s10533-011-9636-5

Bradford MA, McCulley RL, Crowther TW, Oldfield EE, Wood SA, Fierer N. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nature Ecology and Evolution. 2019;3(2):223-231. Available:https://doi.org/10.1038/s41559-018-0771-4

Wieder WR, Grandy AS, Kallenbach CM, Bonan GB. Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model. Biogeosciences. 2014;11(14):3899-3917. Available:https://doi.org/10.5194/bg-11-3899-2014

Louis BP, Maron PA, Menasseri-Aubry S, Sarr A, Lévêque J, Mathieu O, Jolivet C, Leterme P, Viaud V. Microbial diversity indexes can explain soil carbon dynamics as a function of carbon source. Plos One. 2016;11(8):e0161251. Available:https://doi.org/10.1371/journal.pone.0161251

Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, Beman JM, Abell G, Philippot L, Prosser J, Foulquier A, Yuste JC, Glanville HC, Jones DL, Angel R, Salminen J, Newton RJ, Bürgmann H, Ingram LJ, Nemergut DR. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes? Frontiers in Microbiology. 2016;7:214. Available: https://doi.org/10.3389/fmicb.2016.00214

Wang G, Post WM, Mayes MA. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. Ecological Applications. 2013;23(1):255-272. Available:https://doi.org/10.1890/12-0681.1

Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JMH, McCulley RL, La Pierre K, Risch AC, Seabloom EW, Schütz M, Steenbock C, Stevens CJ, Fierer N. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences. 2015;112(35):10967-10972. Available:https://doi.org/10.1073/pnas.1508382112

Peay KG, Baraloto C, Fine PVA. Strong coupling of plant and fungal community structure across western Amazonian rainforests. The ISME Journal. 2013;7(9):1852-1861. Available:https://doi.org/10.1038/ismej.2013.66

Hartmann M, Frey B, Mayer J, Mäder P, Widmer F. Distinct soil microbial diversity under long-term organic and conventional farming. The ISME Journal. 2015;9(5):1177-1194. Available:https://doi.org/10.1038/ismej.2014.210

Zhalnina K, Dias R, De Quadros PD, Davis-Richardson A, Camargo FAO, Clark IM, McGrath SP, Hirsch PR, Triplett EW. Soil pH determines microbial diversity and composition in the park grass experiment. Microbial Ecology. 2015;69(2):395-406. Available:https://doi.org/10.1007/s00248-014-0530-2

Verbruggen E, Van Der Heijden MGA, Rillig MC, Kiers ET. Mycorrhizal fungal establishment in agricultural soils: Factors determining inoculation success. New Phytologist. 2013;197(4):1104-1109. Available:https://doi.org/10.1111/j.1469-8137.2012.04348.x

DeAngelis KM, Pold G, Topçuoğlu BD, Van Diepen LTA, Varney RM, Blanchard JL, Melillo J, Frey SD. Long-term forest soil warming alters microbial communities in temperate forest soils. Frontiers in Microbiology. 2015;6:104. Available: https://doi.org/10.3389/fmicb.2015.00104

Zhou J, Xue K, Xie J, Deng Y, Wu L, Cheng X, Fei S, Deng S, He Z, Van Nostrand JD, Luo Y. Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change. 2012;2(2):106-110. Available:https://doi.org/10.1038/nclimate1331

Trivedi P, Anderson IC, Singh BK. Microbial modulators of soil carbon storage: Integrating genomic and metabolic knowledge for global prediction. Trends in Microbiology. 2013;21(12):641-651. Available:https://doi.org/10.1016/j.tim.2013.09.005

Frey SD, Knorr M, Parrent JL, Simpson RT. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management. 2004;196(1):159-171. Available:https://doi.org/10.1016/j.foreco.2004.03.018

Bardgett RD, Bowman WD, Kaufmann R, Schmidt SK. A temporal approach to linking aboveground and belowground ecology. Trends in Ecology and Evolution. 2005;20(11):634-641. Available:https://doi.org/10.1016/j.tree.2005.08.005

Orwin KH, Buckland SM, Johnson D, Turner BL, Smart S, Oakley S, Bardgett RD. Linkages of plant traits to soil properties and the functioning of temperate grassland. Journal of Ecology. 2010;98(5):1074-1083. Available:https://doi.org/10.1111/j.1365-2745.2010.01679.x

Nielsen UN, Ayres E, Wall DH, Bardgett RD. Soil biodiversity and carbon cycling: A review and synthesis of studies examining diversity-function relationships. European Journal of Soil Science. 2011;62(1):105-116. Available:https://doi.org/10.1111/j.1365-2389.2010.01314.x

Yao H, Gao Y, Nicol GW, Campbell CD, Prosser JI, Zhang L, Han W, Singh BK. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Applied and Environmental Microbiology. 2011;77(13):4618-4625. Available:https://doi.org/10.1128/AEM.00136-11

Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews. 2013;37(5):634-663. Available:https://doi.org/10.1111/1574-6976.12028

Kumar U, Nayak AK, Shahid M, Gupta VVSR, Panneerselvam P, Mohanty S, Kaviraj M, Kumar A, Chatterjee D, Lal B, Gautam P, Tripathi R, Panda BB. Continuous application of inorganic and organic fertilizers over 47 years in paddy soil alters the bacterial community structure and its influence on rice production. Agriculture, Ecosystems and Environment. 2018;262:65-75. Available:https://doi.org/10.1016/j.agee.2018.04.016

Hirt MR, Grimm V, Li Y, Rall BC, Rosenbaum B, Brose U. Bridging scales: Allometric random walks link movement and biodiversity research. Trends in Ecology and Evolution. 2018;33(9):701-712. Available:https://doi.org/10.1016/j.tree.2018.07.003

Philippot L, Čuhel J, Saby NPA, Chèneby D, Chronáková A, Bru D, Arrouays D, Martin-Laurent F, Šimek M. Mapping field-scale spatial patterns of size and activity of the denitrifier community. Environmental Microbiology. 2009;11(6):1518-1526. Available: https://doi.org/10.1111/j.1462-2920.2009.01879.x

Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. Global patterns in belowground communities. Ecology Letters. 2009;12(11):1238-1249. Available:https://doi.org/10.1111/j.1461-0248.2009.01360.x

Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. Biochar effects on soil biota – A review. Soil Biology and Biochemistry. 2011;43(9):1812-1836. Available:https://doi.org/10.1016/j.soilbio.2011.04.022

Bailey VL, Fansler SJ, Stegen JC, McCue LA. Linking microbial community structure to β-glucosidic function in soil aggregates. The ISME Journal. 2013;7(10):2044-2053. Available:https://doi.org/10.1038/ismej.2013.87

Cheng L, Booker FL, Tu C, Burkey KO, Zhou L, Shew HD, Rufty TW, Hu S. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science. 2012;337(6098):1084-1087. Available:https://doi.org/10.1126/science.1224304

De Vries FT, Shade A. Controls on soil microbial community stability under climate change. Frontiers in Microbiology. 2013;4:265. Available:https://doi.org/10.3389/fmicb.2013.00265

Lau JA, Lennon JT. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proceedings of the National Academy of Sciences. 2012;109(35):14058-14062. Available:https://doi.org/10.1073/pnas.1202319109

Drijber RA, Doran JW, Parkhurst AM, Lyon DJ. Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biology and Biochemistry. 2000;32(10):1419-1430. Available:https://doi.org/10.1016/S0038-0717(00)00060-2

Hoppe B, Kahl T, Karasch P, Wubet T, Bauhus J, Buscot F, Krüger D. Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi. Plos One. 2014;9(2):e88141. Available:https://doi.org/10.1371/journal.pone.0088141

Eilers KG, Debenport S, Anderson S, Fierer N. Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biology and Biochemistry. 2012;50:58- 65. Available:https://doi.org/10.1016/j.soilbio.2012.03.011

Saison C, Degrange V, Oliver R, Millard P, Commeaux C, Montange D, Le Roux X. Alteration and resilience of the soil microbial community following compost amendment: Effects of compost level and compost-borne microbial community. Environmental Microbiology. 2006;8(2): 247-257. Available:https://doi.org/10.1111/j.1462-2920.2005.00892.x

Ramirez KS, Craine JM, Fierer N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology. 2012;18(6):1918-1927. Available:https://doi.org/10.1111/j.1365-2486.2012.02639.x

Pester M, Knorr KH, Friedrich MW, Wagner M, Loy A. Sulfate-reducing microorganisms in wetlands – fameless actors in carbon cycling and climate change. Frontiers in Microbiology. 2012;3:72. Available:https://doi.org/10.3389/fmicb.2012.00072

Chaparro JM, Sheflin AM, Manter DK, Vivanco JM. Manipulating the soil microbiome to increase soil health and plant fertility. Biology and Fertility of Soils. 2012;48(5):489-499. Available:https://doi.org/10.1007/s00374-012-0691-4

Miransari M. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnology Advances. 2011;29(6):645-653. Available:https://doi.org/10.1016/j.biotechadv.2011.04.006

Frostegård Å, Tunlid A, Bååth E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Applied and Environmental Microbiology. 1993;59(11):3605-3617. Available:https://doi.org/10.1128/aem.59.11.3605-3617.1993

Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK. Methane, microbes and models: Fundamental understanding of the soil methane cycle for future predictions. Environmental Microbiology. 2013;15 (9):2395-2417. Available:https://doi.org/10.1111/1462-2920.12149

Rousk J, Brookes PC, Bååth E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology. 2009;75(6):1589-1596. Available:https://doi.org/10.1128/AEM.02775-08

Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology. 2010;91(12):3463-3470. Available: https://doi.org/10.1890/10-0426.1

Hiscox J, Savoury M, Müller CT, Lindahl BD, Rogers HJ, Boddy L. Priority effects during fungal community establishment in beech wood. The ISME Journal. 2015;9(10):2246-2260. Available: https://doi.org/10.1038/ismej.2015.38

Liesack W, Schnell S, Revsbech NP. Microbiology of flooded rice paddies. FEMS Microbiology Reviews. 2000;24(5):625-645. Available:https://doi.org/10.1111/j.1574-6976.2000.tb00563.x

Thomson BC, Tisserant E, Plassart P, Uroz S, Griffiths RI, Hannula SE, Buée M, Mougel C, Ranjard L, Van Veen JA, Martin F, Bailey MJ, Lemanceau P. Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biology and Biochemistry. 2015;88:403-413. Available:https://doi.org/10.1016/j.soilbio.2015.06.012

Finlay RD. Ecological aspects of mycorrhizal symbiosis: With special emphasis on the functional diversity of interactions involving the extraradical mycelium. Journal of Experimental Botany. 2008;59(5):1115-1126. Available:https://doi.org/10.1093/jxb/ern059

Canfora L, Bacci G, Pinzari F, Lo Papa G, Dazzi C, Benedetti A. Salinity and bacterial diversity: To what extent does the concentration of salt affect the bacterial community in a saline soil? Plos One. 2014;9(9):e106662. Available:https://doi.org/10.1371/journal.pone.0106662

López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Scientific Reports. 2016;6(1):25279. Available:https://doi.org/10.1038/srep25279

Duchicela J, Sullivan TS, Bontti E, Bever JD. Soil aggregate stability increase is strongly related to fungal community succession along an abandoned agricultural field chronosequence in the Bolivian Altiplano. Journal of Applied Ecology. 2013;50(5):1266-1273. Available:https://doi.org/10.1111/1365-266 4.12130

Jacobsen CS, Hjelmsø MH. Agricultural soils, pesticides and microbial diversity. Current Opinion in Biotechnology. 2014;27:15-20. Available:https://doi.org/10.1016/j.copbio.2013.09.003

Lauber CL, Strickland MS, Bradford MA, Fierer N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry. 2008;40(9):2407-2415. Available:https://doi.org/10.1016/j.soilbio.2008.05.021

Richardson AE, Simpson RJ. Soil microorganisms mediating phosphorus availability. Plant Physiology. 2011;156 (3):989-996. Available:https://doi.org/10.1104/pp.111.175448

Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu H, Anderson IC, Jeffries TC, Zhou J, Singh BK. Microbial regulation of the soil carbon cycle: Evidence from gene–enzyme relationships. The ISME Journal. 2016;10(11):2593-2604. Available:https://doi.org/10.1038/ismej.2016.65

Mendes R, Kruijt M, De Bruijn I, Dekkers E, Van Der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science. 2011;332(6033):1097-1100. Available:https://doi.org/10.1126/science.1203980

Jangid K, Williams MA, Franzluebbers AJ, Schmidt TM, Coleman DC, Whitman WB. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biology and Biochemistry. 2011;43(10):2184-2193. Available:https://doi.org/10.1016/j.soilbio.2011.06.022

Attard E, Poly F, Commeaux C, Laurent F, Terada A, Smets BF, Recous S, Roux XL. Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices. Environmental Microbiology. 2010;12(2):315-326. Available:https://doi.org/10.1111/j.1462-2920.2009.02070.x

Rawls WJ, Pachepsky YA, Ritchie JC, Sobecki TM, Bloodworth H. Effect of soil organic carbon on soil water retention. Geoderma. 2003;116(1):61-76. Available:https://doi.org/10.1016/S0016-7061(03)00094-6