Antifungal Activity of Copper, Zinc and Potassium Compounds on Mycelial Growth and Conidial Germination of Fusarium solani f. sp. piperis

Main Article Content

Renata Aparecida Ahnert dos Santos
Verônica D’Addazio
João Vitor Garcia Silva
Antelmo Ralph Falqueto
Marcelo Barreto da Silva
Edilson Romais Schmildt
Adriano Alves Fernandes

Abstract

Fusariosis is a disease that causes economic damage to black pepper (Piper nigrum L.) producers. Despite being a major disease, there is no record of efficient chemical control. Thus, the objective was to evaluate the antifungal activity of copper, zinc and potassium compounds in mycelial growth and conidial germination of Fusarium solani f. sp. piperis in vitro. For inoculation in PDA (Potato Dextrose Agar) medium, 7 mm discs from the pure culture were transferred to Petri dishes. The plates were incubated at 25ºC in a biochemical oxygen demand (BOD) chamber, with photoperiod of 12 h, for 15 days. Micronutrients were supplied as sulfates, CuSO4 (copper sulfate) and ZnSO4 (zinc sulfate), at concentrations of 1, 5, 10, 15 and 20 mmol/L. Potassium macronutrient (K) was supplied as KCl (potassium chloride) at concentrations of 30, 60, 90,120 and 150 mmol/L. The experiment was performed using a completely randomized design with 6 treatments and ten replications. CuSO4 showed fungicidal effect at concentrations of 10, 15 and 20 mmol/L. For ZnSO4 mycelial growth was completely inhibited at concentrations of 15 and 20 mmol/L. There was no inhibition or reduction of fungal growth in the presence of K. Copper and zinc at minimal concentrations were efficient in controlling mycelial growth and inhibition of spore germination of F. solani f. sp. piperis. In contrast, potassium did not exert fungicidal or fungistatic effect on the fungus.

Keywords:
Fusarium solani, antigungal activity, fungal growth inhibition, nutrients

Article Details

How to Cite
dos Santos, R. A. A., D’Addazio, V., Silva, J. V. G., Falqueto, A. R., Barreto da Silva, M., Schmildt, E. R., & Fernandes, A. A. (2019). Antifungal Activity of Copper, Zinc and Potassium Compounds on Mycelial Growth and Conidial Germination of Fusarium solani f. sp. piperis. Microbiology Research Journal International, 29(6), 1-11. https://doi.org/10.9734/mrji/2019/v29i630179
Section
Original Research Article

References

Burdon JJ, Silk J. Sources and patterns of diversity in plant-pathogenic fungi. Phytopathology. 1997;87:664-669.

Leal PC, Cantanhede KL, Silva LM, Bezerra GFB. Micotoxinas do Fusarium e seu potencial carcinogênico. 70ª Ed. São Paulo: NewsLab Press; 2005. Brazil.

Hennequin C, Abachin E, Symoens F, Lavarde V. Identification of Fusarium species involved in human infections by 28S rRNA gene sequencing. J Clin Microbiol. 1999;37:3586-3589.

Duarte MLR, Albuquerque FC. Sistema de Produção da Pimenteira-do-reino, Embrapa Amazônia Oriental; 2005.
[Accessed 24 July 2017]
Available:http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Pimenta/PimenteiradoReino/paginas/importancia.htm

D’Addazio V. Crescimento micelial de Fusarium solani f. sp. piperis e respostas de cultivares de pimenta-do-reino (Piper nigrum L.) ao estresse abiótico e biótico: Biometria, fotossíntese, resistência e avaliação de produtos alternativos de controle da fusariose. Vitória: Universidade Federal do Espírito Santo; 2017. Brazil.

Ventura JA, Costa H. Manejo da fusariose da pimenta-do-reino no estado do Espírito Santo. Vitória: Instituto Capixaba de Pesquisa, Assistência Técnica e Extensão Rural; 2004. Brazil.

Silva SO, Neto APD, Silva MB. Pimenta-do-reino: importância da defesa fitossanitária para a sustentabilidade da atividade na região norte do Espírito Santo. Rev Bras Agropecu Sustent. 2011;1:88-92. Brazil.

Tremacoldi CR. Principais doenças fúngicas da pimenteira-do-reino no estado do Pará e recomendações de controle. Belém: Embrapa Amazônia Oriental; 2010. Brazil.

Pandey S, Giri K, Kumar R, Mishra G. Nanopesticides: Opportunities in crop protection and associated environmental risks. Proc Natl Acad Sci Sect B Biol Sci. 2018;88:1287–1308.

Agrios GN. Plant pathology. 5th Ed. New York: Academic Press; 2005.

Sutton JC. Strategies for biological control of necrotrophic pathogens in perennial crops. Fitopatol Bras. 2000;25:235-238.

Tokeshi H. Doenças e pragas agrícolas geradas e multiplicadas pelos agrotóxicos. Fitopatol Bras. 2000;25:264-271. Brazil.

Kah M, Kookana RS, Gogos A, Bucheli TD. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol. 2018;13:677–684.

Sun Q, Li J, Le, T. Zinc oxide nanoparticle as a novel class of antifungal agents: current advances and future perspectives. J Agric Food Chem. 2018;66:11209–11220.

Deliopoulus T, Kettlewell PS, Hare MC. Fungal disease suppression by inorganic salts: A review. Crop Protec. 2010;29: 1059-1075.

Zambolim L, Rodrigues FA, Capucho AS. Resistência a doenças de plantas induzida pela nutrição mineral. In: Controle alternativo de pragas e doenças. Venzon M, Paula Junior TJ, Pallini A, Editors. Viçosa: Epamig/CTZM. 2005;275-318.

Keller AA, Adeleye AS, Conway JR. Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact. 2017;7:28–40.

Zambolim L, Ventura AJ, Zanão LA. Efeito da nutrição mineral no controle de doenças de plantas. Viçosa: Editora Independente; 2012. Brazil.

Savi GD, Vitorino V, Bortoluzzi AJ, Scussel VM. Effect of zinc compounds on Fusarium verticillioides growth, hyphae alterations, conidia, and fumonisin production. J Sci Food Agric. 2013;93:3395–3402.

Savi GD, Vitorino V, Bortoluzzi AJ, Scussel VM. Antifungal properties of zinc-compounds against toxigenic fungi and mycotoxin. Int J Food Sci Technol. 2013;48:1834–1840.

Rout GR, Das P. Effect of metal toxicity on plant growth and metabolism. Agronomie. 2003;23:3–11.

Aravind P, Prasad MNV. Zinc protects chloroplasts and associated photochemical functions in cadmium exposed Ceratophyllum demersum L., a fresh water macrophyte. Plant Sci. 2004;166:1321–1327.

Hussain I, Singh NB, Singh A, Singh H. Green synthesis of nanoparticles and its potential application. Biotechnol Lett. 2016;38:545–560.

Graham DR. Effects of nutrients stress on susceptibility of plants to disease with particular reference to the trace elements. Adv Bot Res. 1983;10:221–276.

Sharma S, Duveiller E, Basnet R, Karki CB. Effect of potash fertilization on Helminthosporium leaf blight severity in wheat, and associated increases in grain yield and kernel weight. Field Crop Res. 2005;93:142–150.

Raij, van B. Potássio: necessidade e uso na agricultura moderna. Piracicaba: Potafós;1990. Brazil.

Taiz L, Zeiger E. Fisiologia e Desenvolvimento Vegetal. 6ª Ed. Porto Alegre: Artmed; 2017. Brazil.

Rawat N, Pumphrey MO, Li S, Zhang X. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat Genet. 2016;48: 1576–1580.

Wang M, Zheng Q, Shen Q, Guo S. The critical role of potassium in plant stress response. Int J Mol Sci. 2013;14:7370–7390.

Bloom AJ. Nutrição mineral. In: Fisiologia Vegetal. Taiz L, Zeiger E, Editors. Porto Alegre: Artmed. 2004;96-103.

Gu Z, Chen R, Xing R, Liu S. Novel derivatives of chitosan and their antifungal activities in vitro. Carbohydr Res. 2006;341:351–354.

Cruz CD. Genes Software – extended and integrated with the R, Matlab and Selegen. Acta Sci. 2016;38:547- 552.

Smith SN. An overview of ecological and habitat aspects in the genus Fusarium with special emphasis on the soil-borne pathogenic forms. Plant Pathol Bull. 2007;16:97–120.

Resende MLV. Indução de resistência na cafeicultura: Perspectivas de uso. In: Manejo fitossanitário da cultura do cafeeiro. Blun, LEB, Editor. Lavras: Universidade Federal de Lavras. 2008;25-35. Brazil.

Melo LGDL, Silva EKC, Campos Neto JRM, Lins SRO. Indutores de resistência abióticos no controle da fusariose do abacaxi. Pesq Agropec Bras. 2016;51: 1703-1709. Brazil.

Spolti P, Valdebenito-Sanhueza RM, Campos AD, Del Ponte EM. Modo de ação de fosfitos de potássio no controle da podridão olho de boi em maçã. Summa Phytopathol. 2015;41:42-48. Brazil.

Costa BHG, Resende MLV, Ribeiro Júnior PM, Mathioni SM. Suppression of rust and brown eye epot diseases on coffee by phosphites and by-products of coffee and citrus industries. J Phytopathol. 2014;162: 1–8.

Krumova EZ, Pashova SB, Dolashka-Angelova PA, Stefanova T. Biomarkers of oxidative stress in the fungal strain Humicola lutea under copper exposure. Process Biochem. 2009;44:288–295.

Rai M, Ingle PA, Pandit R, Paralikar P. Copper and copper nanoparticles: role in management of insect-pests and pathogenic microbes. Nanotechnol Rev. 2018;1-14.

Civardi C, Schwarze FWMR, Wick P. Micronized copper wood preservatives: An efficiency and potential health risk assessment for copper-based nanoparticles. Env Poll. 2015;200:126–132.

Nemati A, Shadpour S, Khalafbeygi H, Ashraf S. Efficiency of hydrothermal synthesis of nano/microsized copper and study on in vitro antifungal activity. Mater Manuf Process. 2015;30:63–69.

Aleksandrowicz-Trzcinska M, Szaniawski A, Olchowik J, Drozdowski S. Effects of copper and silver nanoparticles on growth of selected species of pathogenic and wood-decay fungi in vitro. For Chron. 2018;94:109–116.

Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater. 2001;3:643–646.

Stoimenov PK, Klinger RL, Marchin GL, Klabunde JS. Metal oxide nanoparticles as bactericidal agents. Langmuir. 2001;18: 6679–6686.

Zhang L, Jiang Y, Ding Y, Povey M. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res. 2007;9:479–489.

Liu Y, He L, Mustapha A, Li H. Lin. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7Y. J Appl Microbiol. 2009;107: 1193–1201.

Sawai J, Yoshikawa T. Quantitative evaluation of antifungal activity of metallic oxide powders (MgO, CaO and ZnO) by an indirect conductimetric assay. J Appl Microbiol. 2004;96:803-9.

He L, Liu Y, Mustapha A, Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res. 2011;166:207–215.

Feng QL, Wu J, Chen GQ, Cui FZ. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mat Res. 2000;52:662–668.

Applerot G, Lipovsky A, Dror R. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS mediated cell injury. Adv Funct Mater. 2009;19:842–852.

Król A, Pomastowski P, Rafińska K, Railean-Plugaru V. Zinc oxide nanoparticles: synthesis, antiseptic activity and toxicity mechanism. Adv Colloid Interf Sci. 2017;249:37–52.

Ashajyothi C, Prabhurajeshwar C, Handral HK, Kelmani CR. Investigation of antifungal and anti-mycelium activities using biogenic nanoparticles: An eco-friendly approach. Environ Nanotechnol Monit Manag. 2016;5:81–87.

Chand G, Jaiswal US, Maru AK. Effect of micronutrients on Panama wilt of banana (Fusarium oxysporum f. sp. cubense) and its synergistic action with Trichoderma viride. Conference Proceedings of International Conference on Innovative Approaches in Applied Sciences and Technologies (iCiAsT-2016); 2016.

Bartnicki-Garcia S. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol. 1968;22:87–108.

Malandrakis AA, Kavroulakis N, Chrysikopoulos CV. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci Total Environ. 2019;670:292–299.

Holzmueller EJ, Jose S, Jenkins MA. Influence of calcium, potassium, and magnesium on Cornus florida L. density and resistance to dogwood anthracnose. Plant Soil. 2007;290:189–199.

Zorb C, Senbayram M, Peiter E. Potassium in agriculture–status and perspectives. J Plant Physiol. 2014;171: 656–669.

Gao X, Zhang S, Zhao X, Wu O. Potassium-induced plant resistance against soybean cyst nematode via root exudation of phenolic acids and plant pathogen-related genes. PLoS ONE. 2018;13:1-13.

Amtmann A, Troufflard S, Armengaud P. The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plantarum. 2008;133:682–691.

Dordas C. Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agro Sustain Dev. 2008;28:33–46.