Methicillin and Inducible Clindamycin-resistant Staphylococcus aureus Isolates from Clinical Samples in Abia State

Main Article Content

A. C. Ifediora
R. N. Nwabueze
E. S. Amadi
C. I. Chikwendu


Staphylococcus aureus is a major bacterial pathogen that causes different community and hospital-acquired infections. S. aureus resistant to methicillin has become a big and expanding problem of concern in many developing countries. Clindamycin has also been discovered to be a preferred therapeutic alternative for the treatment of both methicillin susceptible and resistant staphylococcal infections. This study examined the prevalence of Methicillin-resistant Staphylococcus aureus (MRSA) in clinical samples of patients in Abia state, Nigeria using standard recommended procedures. A total of 750 clinical specimens of blood and urine samples, wound, ear, nasal, high vaginal and ear swabs were collected from three major health facilities in Abia state, Nigeria. Each sample was cultured for bacterial isolates and examined for colonial and cellular morphology while biochemical identification was performed. Antimicrobial susceptibility test was performed on Mueller-Hinton agar (MHA) by disc diffusion method and MRSA screening was done using cefoxitin disc.  A total of 265 (35.3%) S. aureus isolates were recovered, out of which 126(47.5%) were from males and 139(52.5%) were from females, however there was no association between the prevalence and gender (p-value = 0.05) and also prevalence and age (p-value = 0.52). Of the 265 S. aureus isolates recovered, 164(61.9%) were MRSA. All 100% of the MRSA were susceptible to vancomycin, 120(73.2%) to clindamycin, 92(56.1%) to gentamycin. All 100% were resistant to ceftazidine, 157(95.7%) to cloxacillin, 146(89.0%) to augmentin, 136(82.9%) to ceftriaxone and 103(61.6%) to erythromycin. The MRSA strains showed much higher resistance rate than their MSSA counterparts to all tested antibiotic except clindamycin. 64(39.0%) of the MRSA were resistant to 4 classes of antibiotics indicating multi drug resistance (MDR). The overall prevalence of inducible clindamycin resistance among methicillin resistant isolates was 29(17.7%). This implies that 17.7% could have been misidentified as clindamycin susceptible by Kirby-Bauer disk diffusion method. In conclusion prevalence of MRSA was high and it is important to routinely carry out the D-test for detection of inducible clindamycin resistance if clindamycin is considered as a treatment option.

MRSA, MDR, inducible clindamycin-resistance

Article Details

How to Cite
Ifediora, A., Nwabueze, R., Amadi, E., & Chikwendu, C. (2019). Methicillin and Inducible Clindamycin-resistant Staphylococcus aureus Isolates from Clinical Samples in Abia State. Microbiology Research Journal International, 29(4), 1-9.
Original Research Article


Plata K, Rosato AE, Wegrzyn G. Staphylococcus aureus as an infectious agent: Overview of biochemistry and molecular genetics of its pathogenicity. Acta Biochimica Polonica. 2009;56:597-612.

Gordon RJ, Lowy FD. Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis. 2008;46(5):350-359.

Lowy FD. Staphylococcus aureus infections. N. Engl. J. Med. 1998;339:520-532.

Bhatia A, Zahoum S. Staphylococcus aureus enterotoxins: A review. J of Clin and Diag Res. 2007;1:188-197.

Shittu AO, Okon K, Adesida S, Oyedara O, Witte W, Strommenger B, Layer F, Nübe U. Antibiotic resistance and molecular epidemiology of Staphylococcus aureus in Nigeria. Bio Medical Central of Microbiol. 2011;11:92-94.

Bal AM, Gould IM. Antibiotic resistance in Staphylococcus aureus and its relevance in therapy. Expert Opinion on Pharmacotherapy. 2005;6(13):2257-2269.

Gajdacs M. The continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics. 2019;8(2):52.

Baranovich, et al. Molecular characterization and susceptibility of methicillin resistant and methicillin susceptible Staphylococcus aureus isolates from hospitals and the community in Vladivostok, Russia. Clin. Microbiol. Infect. 2010;16:575-582.

Berger-Bach B. Expression of resistance to methicillin. Trends in Microbiol. 1994;2: 389-393.

Gaze W, O’Neill C, Wellington E. Antibiotic resistance in the environment, with particular reference to MRSA. Advances in Applied Microbiol. 2008;63:249-270.

Mansouri S, Khaleghi M. Antibacterial resistance pattern and frequency of methicillin resistant Staphylococcus aureus. Iran. J. Med. Sci. 1997;97:22:93.

Assadullah S, Kakru D, Thoker M, Bhat F, Hussai N, Shan A. Emergency of low-level vancomycin resistance in MRSA. Indian J. Med. Microbiol. 2003;21:49-51.

Jensen SO, Lyon BR. Genetic antimicrobial resistance in Staphylococcus aureus. Future Micro. 2009;4:565-582.

Yilmaz G, Aydin K, Iskender S, Caylan R, Koksal I. Detection and prevalence of inducible clindamycin resistance in Staphylococci. J Med Microbiol. 2007;56: 342–345.

Deotale V, Mendiratta DK, Raut U, Narang P. Inducible clindamycin resistance in Staphylococcus aureus isolated from clinical samples. Indian J. Med. Microbiol. 2010;28:124-126.

Ajantha GS, Kulkarni RD, Shetty J, Shubhada C, Jain P. Phenotypic detection of inducible clindamycin resistance among Staphylococcus aureus isolates by using the lower limit of recommended inter-disk distance. Indian. J. Pathol Microbiol. 2008; 51:376–378.

Leclercq R. Mechanisms of resistance to macrolides and lincosamides: Nature of the resistance elements and their clinical implications. Clin Infect Dis. 2002;34:482–492.

Fiebelkorn KR, Crawford SA, McElmeel ML, Jorgensen JH. Practical disc diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative Staphylococci. J Clin Microbiol. 2003;41: 4740–4744.

Taiwo SS, Onile BA, Akanbi AA. Methicillin‑resistant Staphylococcus aureus (MRSA) isolates in Nigeria. Afr J Clin Exp Microbiol. 2004;5:189‑97.

Onanuga A, Oyi AR, Olayinka BU. Prevalence of community associated multi-resistant Staphylococcus aureus among healthy women in Abuja, Nigeria. Afr J Biotech. 2005;4:942–45.

Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; nineteenth informational supplement. Wayne PA: Clinical and Laboratory Standards Institute; 2009.

Adebayo OS, Lin J. Antimicrobial susceptibility patterns and characterization of clinical isolates of Staphylococcus aureus in Kwa Zulu-Natal Province, South Africa. BMC Infect Dis. 2006;6:2334-2336.

Fokas S, Tsironi M, Kalkani M. Dionysopouly M. Prevalence of inducible clindamycin resistant in macrolides- resistant Staphylococcus spp. Clin Microbiol and Infect. 2005;11:337-340.

Akerele OJ, Obasuyi O, Omed D. Prevalence of methicillin-resistant Staphylococcus aureus among healthy residents of Ekosodin community in Benin-City, Nigeria. Trop. J. Pharm. Res. 2015; 14(8):1495-99.

Osinupebi OA, Osiyemi JA, Deji-Agboola AM, Akinduti PA, Ejilude O, Makanjuola SO, Sunmola NO, Osiyemi EO. Prevalence of methicillin-resistant Staphylococcus aureus in Abeokuta, Nigeria. South Asian J of Res in Microbiol. 2018;1(1):1-8.

Onemu OS, Ophori EA. Prevalence of multi‑drug resistant Staphylococcus aureus in clinical specimens obtained from patients attending the University of Benin teaching Hospital, Benin City, Nigeria. J Nat Sci Res. 2013;3:154‑9.

Olowe OA, Eniola KI, Olowe RA, Olayemi AB. Antimicrobial susceptibility and Beta- lactamase detection of MRSA in Oshogho South West, Nigeria. Nat and Sci. 2007;5 (3):44-48.

Abdullahi N, Iregbu KC. Methicillin‑resistant Staphylococcus aureus in a Central Nigeria Tertiary Hospital. Ann. Trop. Pathol. 2018;9:6‑10.

Tebelay D, Adane B. Prevalence and antimicrobial susceptibility pattern of methicilllin resistant Staphylococcus aureus isolated from clinical samples at Yekatit 12 hospital medical college, Addis Ababa, Ethiopia. BMC Infec Dis. 2016; 16:398.

Ndip RN, Ebah LM, Onile BA. Antibiogram of Staphylococcus aureus Isolated from clinical syndromes in Ilorin, Nigeria. J. Med Sci. 1997;6:24-26.

Uwauzike JC, Ariratu LE. A survey of antibiotics resistance Staphylococcus aureus from clinical source in Owerri. J. App. Sci. Environ. Manage. 2004;1:67-68.

Iroha IR, Nwakaeze EA, Oji EA, Nwosu KO, Ayogu AE. Prevalence of Methicillin–Resistant Staphylococcus aureus (MRSA) from Nasal Swabs of Hospitalized Children in Abakaliki. Nig. J. Biotech. 2012;24:1-6.

Joshua BO, Ronke CO. Prevalence and antimicrobial susceptibility of methicillin resistant Staphylococcus aureus and coagulase-negative staphylococci isolated from apparently healthy university students in Ota, Nigeria. J of Nat Sci Res. 2015;5 (24):12-18.

Ejikeugwu C, Nwezeagu FJ, Edeh C, Eze P. Detection of constitutive and inducible-clindamycin-resistance in clinical isolates of Staphylococcus aureus from a Federal Teaching Hospital in Abakaliki, Nigeria. J Bacteriol Infec Dis. 2018;2(1):31-34.

Dancer SJ. The problem with cephalosporins. J. Antimicrob. Chemother. 2001;48:463-478.

Clement OE, Oladiran F, Johnson L, Adebayo OS. Characterization of Staphylococcus aureus isolates obtained from health care institutions in Ekiti and Ondo States, South-Western Nigeria. Afri J of Microbiol Res. 2009;3(12):962-968.

Maj Puneet B, Gurpreet SB, Kundan T, Prashant J, Chaudhari CN, Naveen GA. Antimicrobial susceptibility profile of methicillin-resistant Staphylococcus aureus at a tertiary care centre. Arch. of Clin. Microbiol. 2015;6(3):6-9.

Clotilde Couderc, Sarah Jolivet, Anne CM. Thiébaut, Caroline Ligier, Laetitia Remy, Anne-Sophie Alvarez, Christine Lawrence, Jérôme Salomon, Jean-Louis Herrmann, and Didier Guillemot. Fluoroquinolone use is a risk factor for methicillin-resistant Staphylococcus aureus acquisition in long-term care facilities: A nested case-case-control study. Clin Infect Dis. 2014;59(2): 206–15.

Kesah C, Ben-Redjeb S, Odugbemi TO, Boye CS, Dosso M, Ndinya-Achola JO. Prevalence of methicillin‑resistant Staphylococcus aureus in eight African hospitals and Malta. Clin Microbiol Infect. 2003;9:153‑6.

Taiwo SS, Bamigboye TB, Odaro O, Adefioye OA, Fadiora SO. Vancomycin intermediate and high level resistant Staphylococcus aureus clinical isolates in Osogbo, Nigeria. Microbiol Res. 2011;3: 22‑5.

Fayomi OD, Oyediran EI, Adeyemo AT, Oyekale OT. Resistance pattern of methicillin‑resistance Staphylococcus aureus among in‑patients at a tertiary health facility in Ido‑Ekiti, Nigeria. Internet J Lab Med. 2011;4:1‑5.

Onolitola OS, Olayinka BO, Salawu MJ, Yakubu SE. Nasal carriage of methicillin resistant Staphylococcus aureus with reduced vancomycin susceptibility (MRSA‑RVS) by healthy adults in Zaria, Nigeria. J Trop. Microbiol. Biotechnol. 2007;3:19‑22.

Drinkovic D, Fuller ER, Shore KP, Holland DJ, Pegler E. Clindamycin treatment of Staphylococcus aureus expressing inducible clindamycin resistance. J. Antimicrob. Chemother. 2001;48:315-316.

Nwokah EG, Abbey SD. Inducible clindamycin resistance in Staphylococcus aureus isolates in Rivers State, Nigeria. Am. J. Clin. Expt. Med. 2016;4(3):50-55.

Sasirekha B, Usha MS, Amruta JA. Incidence of constitutive and inducible clindamycin resistance among hospital-associated Staphylococcus aureus. Biotech. 2014;4:85-9.

Parasa LS, Tumati SR, Chigurupati SP. Prevalence of induced clindamycin resistance in methicillin resistant Staphylococcus aureus from hospital population of coastal Andhara Pradesh, South India. Arch of Clin Microbiol. 2011; 2(1):20-26.

Mohanasoundarm KM. The prevalence of inducible clindamycin resistance among Gram positive cocci from various clinical specimens. J. Clin. Diagn. Res. 2011;5(1): 38-40.

Okojokwu OJ, Akpakpan EE, Azi HY, Abubakar BS, Anejo-Okopi JA. Inducible clindamycin resistance in Staphylococcus aureus isolated from palms of poultry workers in Jos, Plateau State, Nigeria. J. Inf. Mol. Biol. 2018;6(1):11-15.

Bottega A, Rodrigues MA, Carvalho FA. Evaluation of constitutive and inducible resistance to clindamycin in clinical samples of Staphylococcus aureus from a tertiary hospital. Rev Soc Bras Med Trop. 2014;47(5):589-92.

Kumurya AS. Detection of inducible clindamycin resistance among staphylococcal isolates from different clinical specimens in Northwestern Nigeria. Int. J. Prev. Med. Res. 2015;1(2):35–39.