Anti-virulence Activity of Three Medicinal Plants: Cassia occidentalis L., Crossopteryx febrifuga (Afzel ex G. Don) Benth. and Zanthoxylum zanthoxyloides (Lam) Zep. and Timl

Main Article Content

Vincent Ouedraogo
Eli Compaoré
Ablassé Rouamba
Moussa Compaoré
Martin Kiendrebeogo

Abstract

Aims: This current study was designated to assess the ability of Cassia occidentalis, Crossopteryx febrifuga and Zanthoxylum zanthoxyloides traditionally used for the treatment of infectious diseases, to reduce the production of virulence factors.

Place and Duration of Study: The study was conducted at the Laboratory of Applied Biochemistry and Chemistry (LABIOCA), University Ouaga 1 Pr Joseph KI-ZERBO between September 2018 to January 2019.

Methodology: Methanol extracts from C. occidentalis (leaves and stem), C. febrifuga (leaves and stem) and Z. zanthoxyloides (Stem bark) were used for the investigations. The reporter strain Pseudomonas aeruginosa PAO1 was used to measure the impact of extracts on elastase and pyocyanin production. Antioxidant activity was measured through 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays.

Results: All extracts at the concentration of 100 µg/mL inhibited significantly the production of pyocyanin without affect negatively the growth of P. aeruginosa PAO1 with a reduction of 39%, 52% and 28% respectively for C. occidentalis, C. febrifuga and Z. zanthoxyloides. C. febrifuga showed the highest inhibition level on the production of elastase with a rate of 48%. The results demonstrated varying level of reduction of pyocyanin and elastase production in the reporter strain.  Moreover, the antioxidant polyphenols evidenced are capable to reduce the oxidative stress induced by pyocyanin.

Conclusion: The antioxidant and anti-virulence properties of these medicinal plants could justify their traditional use in the treatment of infectious diseases.

Keywords:
Cassia occidentalis, Crossopteryx febrifuga, Zanthoxylum zanthoxyloides, virulence factors, Pseudomonas aeruginosa PAO1

Article Details

How to Cite
Ouedraogo, V., Compaoré, E., Rouamba, A., Compaoré, M., & Kiendrebeogo, M. (2019). Anti-virulence Activity of Three Medicinal Plants: Cassia occidentalis L., Crossopteryx febrifuga (Afzel ex G. Don) Benth. and Zanthoxylum zanthoxyloides (Lam) Zep. and Timl. Microbiology Research Journal International, 29(1), 1-7. https://doi.org/10.9734/mrji/2019/v29i130152
Section
Original Research Article

References

López-pueyo MJ, Barcenilla-gaite F, Amaya-villar R, Garnacho-montero J. Antibiotic multiresistance in critical care units. Med. Intensiva. 2011;35(1):41-53.
DOI: 10.1016/j.medin.2010.07.011

Aryee A, Price N. Antimicrobial stewardship – can we afford to do without it ? Br. J. Clin. Pharmacol. 2015;79(2):173-181.
DOI: 10.1111/bcp.12417

Rasamiravaka T, Jedrzejowski A, Kiendrebeogo M, Rajaonson S, Randriamampionona D, Rabemanantsoa C, et al. Endemic malagasy Dalbergia species inhibit quorum sensing in Pseudomonas aeruginosa PAO1. Micro-biology. 2013;159:924-938.
DOI: 10.1099/mic.0.064378-0

Adonizio A, Kong K, Mathee K. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob. Agents Chemother. 2008;52(1):198-203.
DOI: 10.1128/AAC.00612-07.

Vandeputte OM, Kiendrebeogo M, Rajaonson S, Diallo B, Mol A, El Jaziri M, et al. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol. 2010; 76(1):243-253.
DOI: 10.1128/AEM.01059-09.

Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 2012;76(1):46-65.
DOI: 10.1128/MMBR.05007-11

Bjarnsholt T, Givskov M. The role of quorum sensing in the pathogenicity of the cunning aggressor Pseudomonas aeruginosa. Anal Bioanal Chem. 2007;387: 409-414.
DOI: 10.1007/s00216-006-0774-x

Muller M, Li Z, Maitz PKM. Pseudomonas pyocyanin inhibits wound repair by inducing premature cellular senescence: Role for p38 mitogen-activated protein kinase. Burns. 2009;35:500-508.
DOI: 10.1016/j.burns.2008.11.010

Singh BN, Singh HB, Singh A, Singh BR, Mishra A, Nautiyal CS. Lagerstroemia speciosa fruit extract modulates quorum sensing-controlled virulence factor production and biofilm formation in Pseudomonas aeruginosa. Microbiology. 2012;158:529-538.
DOI: 10.1099/mic.0.052985-0

Ouedraogo V, Kiendrebeogo M. Methanol extract from Anogeissus leiocarpus (DC) Guill. et Perr . (Combretaceae) stem bark quenches the quorum sensing of Pseudomonas aeruginosa. Medicines. 2016;3(26):1-10.
DOI: 10.3390/medicines3040026

Karou DS, Tchacondo T, Ilboudo PD, Simpore J. Sub-Saharan Rubiaceae: A review of their traditional uses, phyto-chemistry and biological activity. Pakistan J. Biol. Sci. 2011;14(3):149-169.
DOI: 10.3923/pjbs.2011.149.169

Madureira AM, Ramalhete C, Mulhovo S, Duarte A, Ferreira MU. Antibacterial activity of some African medicinal plants used traditionally against infectious diseases. Pharmacutical Biol. 2012;50(4): 481-489.
DOI: 10.3109/13880209.2011.615841

Aiyenale YM, Oyeleke SB, Oyewole OA, Shaba AM, Ikekwem CC, Ayisa TT. Antibacterial activity of Zanthoxylum zanthoxyloides and Anogeissus leiocarpus against some oral pathogens. Res. J. Pharm. Sci. 2017;6(7):1-6.

Sarabhai S, Sharma P, Capalash N. Ellagic Acid Derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One. 2013;8(1):1-11.
DOI: 10.1371/journal.pone.0053441

Lamien-Meda A, Lamien CE, Compaoré MMY, Meda RNT, Kiendrebeogo M, Zeba B, et al. Polyphenol content and anti-oxidant activity of fourteen wild edible fruits from Burkina Faso. Molecules. 2008;13: 581-594.

Liu GY, Nizet V. Color me bad: Microbial pigments as virulence factors. Trends Microbiol. 2009;17(6):406-413.
DOI: 10.1016/j.tim.2009.06.006

Denning GM, Iyer SS, Reszka KJ, O’Malley Y, Rasmussen GT, Britigan BE. Phenazine-1-carboxylic acid, a secondary metabolite of Pseudomonas aeruginosa alters expression of immunomodulatory proteins by human airway epithelial cells. Am. J. Lung Cell Mol. Physiol. 2003;285: 584-592.

El Kebir D, Filep JG. Targeting neutrophil apoptosis for enhancing the resolution of inflammation. Cells. 2013;2:330–348.

Azghani AO, Neal K, Idell S, Amaro R, Baker JW, Omri A, et al. Mechanism of fibroblast inflammatory responses to Pseudomonas aeruginosa elastase. Micro-biology. 2014;160:547-555.
DOI: 10.1099/mic.0.075325-0.

Munoz-Cazares N, Garcia-Contreras R, Perez-Lopez M, Castillo-Juarez I. Phenolic compounds with anti-virulence properties. In Phenolic Compounds-biological Activity. 2017;139-167.

Singh VV, Jain J, Mishra AK. Pharmaco-logical and phytochemical profile of Cassia occidentalis L: A review. J. Drug Deliv. Ther. 2016;6(5):91-96.
DOI: dx.doi.org/10.22270/jddt.v6i5.1284

Adekunle AS, Kandem JP, Rocha JBT. Antioxidant activity and HPLC analysis of Zanthozylum zanthoxyloides. Rep. Opin. 2012;4(3):6-13.

Tine Y, Renucci F, Costa J, Wélé A, Paolini J. A method for LC-MS / MS profiling of coumarins in Zanthoxylum zanthoxyloides (Lam.) B. Zepernich and Timler extracts and essential oils. Molecules. 2017;22(174):1-13.
DOI: 10.3390/molecules22010174

Ugurlu A, Yagci AK, Ulusoy S, Aksu B, Bosgelmez-tinaz G. Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa. Asian Pac. J. Trop. Biomed. 2016;6(8):698-701.
DOI: 10.1016/j.apjtb.2016.06.008

Nma NY, Mann A, Muhammad BM. GC-MS analysis of bioactive compounds in the ethyl acetate fraction of Crossopteryx febrifuga leaves. J. Chem. Pharm. Res. 2018;10(3):75-79.